(4)Neural Networks: Representation

Machine Learning系列,转载自

http://blog.csdn.net/xuexiang0704/article/details/8934300

以下内容源自coursera上的machine learning,同时参考了Rachel-Zhang的博客(http://blog.csdn.net/abcjennifer)

在讲完了logisitc regression 和 linear regression的两种常用方法后,考虑到一些弊端,我们需要进一步了解其他的机器学习方法,



摘要:

(一)(二):是让我们了解神经网络的一些基本概念;

(三)(四)Neuronsand the Brain I & II:神经网络每一层的工作原理及运算公式.(本节最重要的部分

(五)(六)Examplesand Intuitions I & II:神经网络怎样进行复杂逻辑运算,即complex hypothesis

(七)

MulticlassClassification

  前面讲的都是针对二类的,多类的应该这么办?





正文:



***************************************************************************************************************************************

(一)Nonlinear hypothesis:

前面讲的linearregression和logistic regression都是针对特征数比较小的。但是,如果特征数比较大呢?如果还用上述两种方法就会显得力不从心,因为不仅运算得慢,还有可能overfitting。


这张图片的boundarydecision是粉红色的曲线,如果用logistic regression就有很大可能造成overfitting。

 

总之,对于某些情况,前面讲的两种方法已经不适用于分类的。那用什么呢?先给出答案:神经网络




***************************************************************************************************************************************

(二)Neuronsand the Brain

该节讲了神经网络的起源发展衰退而今又兴起等等。又给了一些amazing的图片,应用等。有兴趣的同学,可以自己上网查查这些好玩的东西。

(因为没有实质性的内容,就是给一个概念,所以就没有截图了。)









***************************************************************************************************************************************

(三)Neuronsand the Brain I   & (四)Neurons and the Brain II

这里不讲神经网络和我们人脑作用的相似之处。直接给出神经网络是如何做的。

 

1. 给出一个最简单的logistic uint:

(这里只有两层,第一层就是x0,x1,x2,x3,称为输入层;第二层就是棕色的圈,称为输出层)


2.下面给出最基本的三层模型,并具体看看如何一层一层往下做的。

(注意下面的两幅图是神经网络刚开始比较重要的图,它们说明了具体的工作原理!要是没看懂的话,请务必一遍一遍看直到看懂!!)




我们先不讲公式是如何做的。先来了解上坐标,下坐标以及的含义。

(1).首先记住,任何字母的上坐标就是代表着第几层!(如果是1代表输入层,2代表隐藏层等)。

(2).下坐标,代表着某一层的第几个。

(3).是一个矩阵(矩阵的大小由第j层和第j+1层的个数决定!)。细心的同学会发现,这个的下坐标不仅仅是一个数字,是两个数字组成的。其实这些数字可以理解成数组中的横坐标和纵坐标,只不过这里的横坐标从1开始,纵坐标从0开始(为什么从0开始呢?后面的那张图我们会讲到





讲完了三者的含义,就应该分析公式是如何推出来了。


先来解释上面提到的疑惑:为什么纵坐标从0开始?

这张图左上角的和上面左上角的那张图,实质上是一样的,只不过在每一层的最上面加了一个1,这就像logistic regression一样在每一个特征前面都加一个1一样的道理。其实这就是上面我说的为什么纵坐标从0开始.













***************************************************************************************************************************************

知道了每一层的工作原理,来看看为什么神经网络可以处理复杂的非线性的hypothesis 

(五)Examplesand Intuitions I  (六)Examples and Intuitions II

各位都知道或,与,非操作吧。

 













***************************************************************************************************************************************







Representation learning(表示学习)是一种机器学习方法,旨在自动地学习数据的有意义的表示或特征。它的目标是通过学习数据的表示来捕捉和提取数据中的关键特征,从而改善后续的学习任务或应用。 传统的机器学习方法通常需要手动设计和选择特征,这在面对复杂的数据或领域时可能会面临挑战。而表示学习通过自动学习数据的表示来解决这个问题。它通过构建一个模型或网络来从原始数据中提取有意义的特征,这些特征能够更好地表示数据的结构和属性。 表示学习可以分为两个主要方向:有监督表示学习和无监督表示学习。 - 有监督表示学习:在有监督表示学习中,利用有标签的数据来指导学习过程。通常,它会通过优化某个目标函数来学习一个映射函数,将输入数据映射到对应的类别或标签上。常见的方法包括深度神经网络(Deep Neural Networks)和卷积神经网络(Convolutional Neural Networks)等。 - 无监督表示学习:在无监督表示学习中,没有使用标签信息,而是尝试从无标签的数据中学习数据的表示。常见的方法包括自编码器(Autoencoders)、主成分分析(Principal Component Analysis, PCA)和生成对抗网络(Generative Adversarial Networks, GANs)等。这些方法可以通过最大化数据的重构误差、最小化数据的信息损失或者通过生成新的数据样本来学习有意义的表示。 表示学习的优势在于它能够从原始数据中学习到更加抽象和有用的特征,从而提高后续任务的性能和效果。通过学习到的表示,可以更好地进行分类、聚类、降维、生成等任务,并且对于新的未见数据也能够具有更好的泛化能力。 总而言之,表示学习是一种机器学习方法,通过自动学习数据的有意义表示或特征,从而改善后续任务的性能,并提高对新数据的泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值