深度视觉
文章平均质量分 87
记录计算机视觉相关知识点与论文
Yee_Ko
这个作者很懒,什么都没留下…
展开
-
对labelme已经标注的图片和json文件做resize操作
尝试解决的问题项目中要使用实例分割网络将图片中的目标分割出来,但是原图普遍非常大,大部分是 (5000pixels * 6000pixels) 这样的规格,如果直接传到网络中进行训练,计算量会非常大。所以考虑先离线resize好了之后作为数据集再训练网络,而不是在输入网络之间才resize(这样会很浪费时间)。实现代码废话少说,直接上代码即可:代码逻辑大概为先统计文件夹中的是图片的文件格式,例如有 {'jpg', 'JPG', 'png'} 这三种,接着使用 glob 库找到包含这几种后缀格式的所有图原创 2020-12-02 09:04:13 · 4725 阅读 · 16 评论 -
CNN网络各种层的FLOPs和参数量paras计算
目录FLOPs标准卷积层的FLOPs深度可分离卷积的FLOPs池化层的FLOPS全局池化一般池化全连接层的FLOPs激活层的FLOPsReLUsigmoid参数量卷积层的参数量深度可分离卷积的参数量池化层的参数量全连接层的参数量参考资料FLOPs这里先注意一下FLOPs的写法,不要弄混了:FLOPS(全大写):是floating point operations per second的缩写...原创 2020-05-04 11:41:34 · 3929 阅读 · 3 评论 -
弄明白感受野大小的计算问题
感受野的概念: 卷及神经网络中每一层输出的特征图(feature map)中的每一个像素映射到原始输入图像的区域大小。计算方式: 采用的是Top-Down方式,即从最高层向低层迭代计算。具体的计算过程推荐看知乎这位大佬的文章,清晰、详细、易懂:如何计算感受野(Receptive Field)——原理...原创 2020-04-21 17:32:21 · 458 阅读 · 0 评论 -
卷积网络中的卷积与互相关的那点事
目录卷积层的来源与作用卷积与互相关将卷积运算转为矩阵相乘参考文献卷积层的来源与作用深度学习的计算机视觉是基于卷积神经网络实现的,卷积神经网络的与传统的神经网络(可以理解为多层感知机)的主要区别是卷积神经网络中除了全连接层外还有卷积层和pooling层等。卷积层算是图像处理中非常基础的东西,它其实也是全连接层演变来的,卷积可视为局部连接和共享参数的全连接层。局部连接:在全连接层中,每个输出通...原创 2020-04-21 16:26:58 · 2066 阅读 · 0 评论 -
【mmdetection】使用自定义的coco格式数据集进行训练及测试
目录一、mmdetection简介二、环境安装1、安装教程2、运行demo测试环境是否安装成功三、训练自定义的dataset1、准备dataset2、Training前修改相关文件3、Training4、Testing一、mmdetection简介项目仓库地址:https://github.com/open-mmlab/mmdetection香港中文大学-商汤科技联合实验室开源了基于 PyT...原创 2019-05-27 23:32:35 · 38900 阅读 · 135 评论 -
深度学习-训练集图片输入神经网络前的标准化(附代码)
在深度学习中,将图片输入网络进行训练之前一般都会对图片进行标准化,以加速训练过程和拟合过程。注意:标准化操作中的均值与标准差是从训练集算出来的,然后用于训练集/验证集/测试集的标准化。python代码如下:第一步:import所需要的库import osimport numpy as npimport cv2import matplotlib.pyplot as pltfrom P...原创 2019-08-27 11:53:06 · 5970 阅读 · 6 评论 -
【labelme】批量将.json文件转换成mask.png等文件
目录labelme安装(ubuntu)修改labelme环境中的代码文件批量转换label.png图片可视化经验小记录参考labelme安装(ubuntu)如果你不是ubuntu系统,那你再自己百度下安装方法吧,也差不多的。最好是新建一个专门用于标注工作的anaconda环境,方面管理。安装命令如下:conda create -n labelme python=3.6source act...原创 2020-01-07 12:06:00 · 17812 阅读 · 9 评论