DDSP(Differentiable Digital Signal Processing) 开篇

本文介绍了DDSP(Differentiable Digital Signal Processing)的概念,它结合了经典数字信号处理元件与深度学习,用于音频合成。DDSP库允许使用神经网络控制参数,生成逼真的信号。文中讨论了DDSP在音频合成模型、音色转换和自动编码器中的应用,以及未来可能的扩展方向,如更多类型的合成器和滤波器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

工作中接触到了DDSP声码器,但非科班出声的我对这块知识非常陌生,甚至带有一些畏惧的心理,但是为了工作为了进步,必须硬下头皮去啃,相信只要耐心地坚持,没什么能难到我。于是从今天开始,就用这个博客专栏来记录我的学习历程,希望也能帮助到你~

DDSP对应的论文是:DDSP: Differentiable Digital Signal Processing

先翻译一篇来自DDSP论文作者的对DDSP的介绍的文章。


今天,我们很高兴地介绍可微数字信号处理(DDSP)库。通过DDSP,您可以将经典DSP元素(如滤波器、振荡器、混响等)的可解释结构与深度学习的表现力结合起来。

神经网络(如 WaveNet or GANSynth)通常是个黑盒子。它们可以适应不同的数据集,但往往会过度拟合数据集的细节,并且难以解释。而可解释模型(如音乐语法)使用已知结构,因此更容易理解,但难以适应不同的数据集。

DSP (Digital Signal Processing, 没有额外的 “differentiable” D) 是现代社会的支柱之一,与电信、交通、音频和许多医疗技术密不可分。你可以在很多书中学习DSP知识,但如果你不熟悉的话,这里有一些关于音频信号、振荡器和滤波器的有趣介绍。

其关键思想是使用简单的可解释DSP元件,通过精确控制其许多参数来创建复杂的真实信号。例如,如果频率和响应调整正确,一组线性滤波器和正弦振荡器(DSP元件)可以产生逼真的小提琴声音。然而,手动动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值