题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
初步解题思想:跳上一级台阶有1中跳法,跳上两级台阶有两种跳法,跳上三级台阶有三种跳法,…,跳上n级就有2^n种跳法,只要求2的n次方即可。
进阶解题思想:跳台阶的进阶版。n级台阶,有f(n)种跳法。则n-1级台阶,有f(n-1)种;n-2级台阶,有f(n-2)种。
f(n)=f(n-1)+f(n-2)+…+f(1)+1
f(n-1)=f(n-2)+f(n-3)+…+f(1)+1
所以f(n)=2*f(n-1)
下面可以使用递归实现(可能会出现栈溢出)。
最优解:为了避免栈溢出,将递归改为动态规划,从底向上,保存先计算的数值。
java初步解题
public class Solution {
public int JumpFloorII(int target) {
int result = 1;
for(int i=1;i<target;i++)
result *= 2;
return result;
}
}
java进阶解题
public class Solution {
public int JumpFloorII(int target) {
if (target<=1)
return target;
return 2*JumpFloorII(target-1);
}
}
最优解
public class Solution {
public int JumpFloorII(int target) {
if (target<=1)
return target;
int jumppre = 1;
for(int i=2;i<=target;i++)
jumppre *= 2;
return jumppre;
}
}