题目描述
输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)
解题思路:看到树,第一个想法就是肯定会用到递归。判断B是不是A的子结构,切入点就是先要找到A中有没有节点能匹配上B的根节点,在接下去判断B的左右子树在不在A中。
解题思路—精简:这个代码内容其实和上述解题思路是一样的!不过,代码简洁了很多!巧妙利用了逻辑运算符:||只要遇到true最后结果则为true,后续条件不再执行;&&只要遇到false最后结果就为false,后续条件也不执行。这个操作极大的精简了代码,但是对于思路不太理解的童鞋来说,还是采用第一种解题思路代码,能更清晰的理解思路。
注意:看到有一些童鞋的解法是将树A和树B进行先序遍历,再做字符串匹配。但是因为节点的个数不同,遍历出来的字符串的顺序会发生很大的变化。举个例子:A:{8,8,7,9,2,#,#,#,#,4,7},B:{8,8,7},B为A的子树,是以A的根节点开始的满二叉树。但是先序遍历后A为8892477,B为887,无法匹配,这个做法行不通,可能是测试用例较少,所以代码能通过,但是思路并不完善。
Java解题
/**
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
public boolean HasSubtree(TreeNode root1,TreeNode root2) {
boolean result = false;
// 查询root1中是否包含root2根节点
if(root1!=null && root2!=null){
if(root1.val==root2.val)
result = Judge(root1, root2);
if(!result)
result = HasSubtree(root1.left, root2);
if(!result)
result = HasSubtree(root1.right, root2);
}
return result;
}
// 判断是否root1中包含root2的其余元素
public boolean Judge(TreeNode root1, TreeNode root2){
// root2遍历完了
if(root2==null)
return true;
// root1遍历完了,但是root2没遍历完
if(root1==null)
return false;
if(root1.val!=root2.val)
return false;
return Judge(root1.left, root2.left) && Judge(root1.right, root2.right);
}
}
Java解题—精简
public class Solution {
public boolean HasSubtree(TreeNode root1,TreeNode root2) {
// 查询root1中是否包含root2根节点
if(root1!=null && root2!=null)
return Judge(root1, root2) || HasSubtree(root1.left, root2) || HasSubtree(root1.right, root2);
// root1或root2中有null
return false;
}
// 判断是否root1中包含root2的其余元素
public boolean Judge(TreeNode root1, TreeNode root2){
/// root2遍历完了
if(root2==null)
return true;
return !(root1==null) && root1.val==root2.val && Judge(root1.left, root2.left) && Judge(root1.right, root2.right);
}
}