题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
解题思路—暴力求解:所谓暴力求解,就是把所有的结果都计算出来,然后排序得到最大值。使用双循环,把这个数组所有不同长度的连续序列值计算出来,然后再返回最大值即可。非常不推荐。
解题思路—动态规划:暴力求解方法其实还是有一点动态规划的思想的!就是代码太冗余,空间复杂度太高。对没有接触过动态规划的童鞋,看完暴力求解代码可能能更加快速的了解动态规划代码。不需要计算所有的连续子序列和,其实只要在加入新数x前判断一下,之前的总和sum加上x的值与x的大小即可。如果(sum+x)<x,只需要保存x,sum+x可以抛弃掉,反之保存sum+x。再设置一个max值同步记录当前最大值。这种简单的动态规划算法,时间复杂度只有O(n),空间复杂度为O(1)。
Java解题—暴力求解
import java.util.ArrayList;
import java.util.Collections;
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
if(array.length==0)
return 0;
ArrayList<Integer> list = new ArrayList<>();
int[] sum = new int[array.length];
for(int i=0;i<array.length;i++)
for(int j=0;j<=i;j++){
sum[j] += array[i];
list.add(sum[j]);
}
Collections.sort(list);
return list.get(list.size()-1);
}
}
Java解题—动态规划
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
if(array.length==0)
return 0;
int total = array[0], max = array[0];
for(int i=1;i<array.length;i++){
total = Math.max(total+array[i], array[i]);
max = Math.max(total, max);
}
return max;
}
}