剑指Offer-连续子数组的最大和

题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

解题思路—暴力求解:所谓暴力求解,就是把所有的结果都计算出来,然后排序得到最大值。使用双循环,把这个数组所有不同长度的连续序列值计算出来,然后再返回最大值即可。非常不推荐
解题思路—动态规划:暴力求解方法其实还是有一点动态规划的思想的!就是代码太冗余,空间复杂度太高。对没有接触过动态规划的童鞋,看完暴力求解代码可能能更加快速的了解动态规划代码。不需要计算所有的连续子序列和,其实只要在加入新数x前判断一下,之前的总和sum加上x的值与x的大小即可。如果(sum+x)<x,只需要保存x,sum+x可以抛弃掉,反之保存sum+x。再设置一个max值同步记录当前最大值。这种简单的动态规划算法,时间复杂度只有O(n),空间复杂度为O(1)

Java解题—暴力求解

import java.util.ArrayList;
import java.util.Collections;
public class Solution {
    public int FindGreatestSumOfSubArray(int[] array) {
    	if(array.length==0)
    		return 0;
        ArrayList<Integer> list = new ArrayList<>();
        int[] sum = new int[array.length];

        for(int i=0;i<array.length;i++)
            for(int j=0;j<=i;j++){
                sum[j] += array[i];
                list.add(sum[j]);
            }
        Collections.sort(list);
        return list.get(list.size()-1);
    }
}

Java解题—动态规划

public class Solution {
    public int FindGreatestSumOfSubArray(int[] array) {
        if(array.length==0)
            return 0;
        int total = array[0], max = array[0];
        for(int i=1;i<array.length;i++){
            total = Math.max(total+array[i], array[i]);
            max = Math.max(total, max);
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值