POJ 2205 subway 600K 0MS
题意:乘坐地铁从家到学校,地铁40km/h 步行10km/h , 已知各个站点的x,y坐标,输入的信息每个列次用-1,-1隔开,要求花费的时间最少
解决方案:把家和学校各看成一个站点,求出相邻站点的权值(路程/速度),以站点数量建立map,保留两站之间的距离,然后dijsktra算法寻找两站点间最短路径
问题:结束条件EOF,sign初始值
#include<iostream>
#include<cmath>
#define MAX 10000000.0
using namespace std;
double pt[202][2];// 存放站点的坐标值
double map[202][202];// 存放各个站点直接的权值(路程/速度)
double d[202]; //记录各点到起点最短距离
double dijkstra(int x, int y,int n)// pt[x]为起点 ,pt[y]为终点 一共n个站点
{
int i,j,k,tx=x,next;//next下一个最短路径位置
double min ;
bool visited[202];
memset(visited,false,sizeof(visited));
visited[x]=true;
for (i=0;i<n;i++)
if(!visited[i])d[i]=map[0][i];
for(i=1; i<n; i++)
{
min = MAX;
for (j=0; j<n; j++)//找到附近最小的路径
if(!visited[j] && d[j]<min)
min=d[j], next=j;
visited[next]= true;//访问
if(next==y) break; //找到终点的最短距离,结束
for (j=0; j<n; j++)//更新各点到源点最短路信息
if(!visited[j] && d[j]>d[next]+map[next][j])
d[j]=d[next]+map[next][j];
}
return d[y];
}
int main()
{
char c;
int i,j,k,num,sign;//num记录站点个数, sign标记站点关联
cin >> pt[0][0] >> pt[0][1] >> pt[1][0] >> pt[1][1];//pt[0],pt[1] 记录起点、终点
memset(map,0,sizeof(map));
num = 2,sign = 0;//sign=0 隔离站点关联
while( scanf("%lf%lf",&pt[num][0],&pt[num][1])!=EOF)
{
// c=getchar();if(c=='#') break;
if(pt[num][0]==-1 && pt[num][1]==-1)
{
sign = 0; continue;
}
if(sign)//求出相邻地铁站点间的权值
map[num][num-1]=map[num-1][num]=
(sqrt(pow(pt[num][0]-pt[num-1][0],2.0)+pow(pt[num][1]-pt[num-1][1],2.0)))/40000.0;
++num, sign =1;
}
//求出剩余各个站点间的权值
for(i=0; i<num; i++)
for (j=0; j<num; j++)
if(map[i][j]==0) map[i][j]=map[j][i]=(sqrt((pt[i][0]-pt[j][0])*(pt[i][0]-pt[j][0])+(pt[i][1]-pt[j][1])*(pt[i][1]-pt[j][1])))/10000.0;
printf("%0.lf\n",dijkstra(0,1,num)*60);//四舍五入输出结果
return 0;
}
POJ 2502 Dijkstra
最新推荐文章于 2019-08-18 18:35:35 发布