背包问题九讲------多重背包

这种背包问题独特之处在于每种物品的件数是被给出的,不止一件。可以转换成01背包问题解答,即把相同的物品拆分。

 

有 NN 种物品和一个容量是 VV 的背包。

第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 NN 行,每行三个整数 vi,wi,sivi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000<N,V≤100
0<vi,wi,si≤1000<vi,wi,si≤100

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

 

#include<iostream>
using namespace std;
int f[2010];
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=0;i<n;i++){
        int v,w,s;
        cin>>v>>w>>s;
        for(int j=m;j>=v;j--){
            for(int k=1;k<=s;k++){
                if(j-k*v>=0)
                    f[j] = max(f[j],f[j-k*v]+w*k);
            }
        }
    }
    cout<<f[m]<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值