二进制优化。
有 NN 种物品和一个容量是 VV 的背包。
第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 NN 行,每行三个整数 vi,wi,sivi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤10000<N≤1000
0<V≤20000<V≤2000
0<vi,wi,si≤20000<vi,wi,si≤2000
提示:
本题考查多重背包的二进制优化方法。
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
#include<iostream>
#include<vector>
using namespace std;
struct Good{
int v;
int w;
};
int f[2010];
int main(){
int n,m;
cin>>n>>m;
vector<Good> p;
for(int i=0;i<n;i++){
int v,w,s;
cin>>v>>w>>s;
for(int k=1;k<=s;k*=2){
s-=k;
p.push_back({k*v,k*w});
}
if(s>0){
p.push_back({s*v,s*w});
}
}
for(auto good:p){
for(int j=m;j>=good.v;j--){
if(j-good.v>=0)
f[j] = max(f[j],f[j-good.v]+good.w);
}
}
cout<<f[m]<<endl;
return 0;
}