POJ 2151 Check the difficulty of problems 概率DP

题目大意:

就是现在有一场比赛有M道题(<= 30), 一共有T个队伍参赛( <= 1000), 现在知道每只队伍做出每道题的概率,问比赛结束之后所有队伍都有过题且过题最多的队伍过了N题或以上的概率( N <= M)


大致思路:

就是一个典型的dp吧 ( ﹁ ﹁ ), 过程见代码注释

Result  :  Accepted     Memory  :  15996 KB     Time  :  125 ms

/*
 * Author: Gatevin
 * Created Time:  2014/12/3 14:44:18
 * File Name: Asuna.cpp
 */
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;

/*
 * 用dp[i][j][k]表示第i个队伍在前j道题中做出k道德概率,那么
 * dp[i][j][k] = dp[i][j - 1][k - 1]*p[i][j] + dp[i][j - 1][k]*(1 - p[i][j]) 0 < k < j
 * dp[i][j][k] = dp[i][j - 1][k - 1]*p[i][j] k == j
 * dp[i][j][k] = dp[i][j - 1][k]*(1 - p[i][j]) k == 0
 * 那么这样可以知道每个队伍做出的题目在0~m之间的概率
 * 用sp[i]表示第i个队伍做出1 ~ n - 1道题的概率 sp[i] = ∑dp[i][m][1 ~ n - 1]
 * 用s[i][j]表示前i个队伍中有j个做出了n题或以上的概率
 * 则s[i][j] = s[i - 1][j]*sp[i] + s[i - 1][j - 1]*(1 - sp[i] - dp[i][m][0]) 0 < j < i
 *   s[i][j] = s[i - 1][j]*sp[i] j == 0
 *   s[i][j] = s[i - 1][j - 1]*(1 - sp[i] - dp[i][m][0]) j == i
 * 最后的结果就是∑s[t][1~t]
 */

//这题没有卡精度,看见POJ2151的discuss里面好多人因为.lf 和.f 的问题发了好多帖子,表示想起某只队友...

int m, t, n;
double dp[1010][31][31];
double p[1010][31];
double s[1010][1010];
double sp[1010];
int main()
{
    while(scanf("%d %d %d", &m, &t, &n), n || t || m)//刚开始n和m打反了交了一发WA...囧
    {
        for(int i = 1; i <= t; i++)
            for(int j = 1; j <= m; j++)
                scanf("%lf", &p[i][j]);
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= t; i++)
        {
            dp[i][0][0] = 1;
            for(int j = 1; j <= m; j++)
                for(int k = 0; k <= j; k++)
                {
                    if(k == 0) dp[i][j][k] = dp[i][j - 1][k]*(1 - p[i][j]);
                    else if(k == j) dp[i][j][k] = dp[i][j - 1][k - 1]*p[i][j];
                    else dp[i][j][k] = dp[i][j - 1][k - 1]*p[i][j] + dp[i][j - 1][k]*(1 - p[i][j]);
                    //cout<<dp[i][j][k]<<" dp["<<i<<"]["<<j<<"]["<<k<<"] "<<endl;
                }
        }
        memset(sp, 0, sizeof(sp));
        for(int i = 1; i <= t; i++)
            for(int k = 1; k < n; k++)
                sp[i] += dp[i][m][k];
        memset(s, 0, sizeof(s));
        s[0][0] = 1;
        for(int i = 1; i <= t; i++)
            for(int j = 0; j <= i; j++)
            {
                if(j == 0) s[i][j] = s[i - 1][j]*sp[i];
                else if(j == i) s[i][j] = s[i - 1][j - 1]*(1 - sp[i] - dp[i][m][0]);
                else s[i][j] = s[i - 1][j]*sp[i] + s[i - 1][j - 1]*(1 - sp[i] - dp[i][m][0]);
            }
        double ans = 0;
        for(int i = 1; i <= t; i++)
            ans += s[t][i];
        printf("%.3f\n", ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值