题目大意:
就是从点(1, 1)走到( R, C)的期望步数,知道每一个格子转移至自身,下面一格,右边一格的概率,转移代价为2,求期望步数。
大致思路:
其实和POJ2096很像,只是每次转移的代价变为2,概率变得各不相同了,另外还有就是有一个陷阱,由于题目保证结果不超过1000000, 可以出现留在原点概率为1的点,但是这样的点是不可达的,计算的时候需要特判,因为浮点数的预算中0.0*(123 / 0.0) = nan
更多细节见代码
代码如下:
就是从点(1, 1)走到( R, C)的期望步数,知道每一个格子转移至自身,下面一格,右边一格的概率,转移代价为2,求期望步数。
大致思路:
其实和POJ2096很像,只是每次转移的代价变为2,概率变得各不相同了,另外还有就是有一个陷阱,由于题目保证结果不超过1000000, 可以出现留在原点概率为1的点,但是这样的点是不可达的,计算的时候需要特判,因为浮点数的预算中0.0*(123 / 0.0) = nan
更多细节见代码
代码如下:
Result : Accepted Memory : 31996 KB Time : 2843 ms
/*
* Author: Gatevin
* Created Time: 2014/12/2 19:35:56
* File Name: Asuna.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
int R,C;
double p[1010][1010][3];
double E[1010][1010];
/*
* 很简单的一道题,但是测试数据略坑爹
* 和POJ2096没什么两样的题,就是换了一下转移个概率每点不一样,转移代价变为2
*/
int main()
{
while(scanf("%d %d", &R, &C) == 2)
{
for(int i = 1; i <= R; i++)
for(int j = 1; j <= C; j++)
scanf("%lf %lf %lf", &p[i][j][0], &p[i][j][1], &p[i][j][2]);
memset(E, 0, sizeof(E));
for(int i = R; i >= 1; i--)
for(int j = C; j >= 1; j--)
{
if(i == R && j == C) continue;
if(1 - p[i][j][0] < eps) continue;
/*
* 对于这一道题这里需要特判,HDU的discuss上说题目保证不会使答案超出1000000
* 所以这样的点应该是不可到达的,
* 那么递推再上一层是到这点的概率是0,对结果的贡献是0,所以可以不计算,直接continue保持E[i][j] = 0
* 如果不continue 那么计算出E[i][j] = nan
* 可以发现之后的计算 nan*0 = nan(并不是0),最终输出也是nan,所以不特判的才会判为Wrong Answer
* 不会Runtime Error因为是浮点数除以0.0
*/
E[i][j] = (p[i][j][1]*E[i][j + 1] + p[i][j][2]*E[i + 1][j] + 2)/(1 - p[i][j][0]);
}
printf("%.3f\n", E[1][1]);
}
return 0;
}