# Codeforces Gym 100548G The Problem to Slow Down You (Palindromic Tree 或 Hash水过) 2014西安现场赛G题

Manacher + 后缀数组二分 + Hash的做法 ( RP因素较高 ) ：

( Hash大法好, Hash出奇迹(>_<) )

Result  :  Accepted     Memory  :  66000 KB     Time  :  9984 ms

/*
* Author: Gatevin
* Created Time:  2015/3/31 14:25:53
* File Name: Rin_Tohsaka.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
typedef unsigned long long ulint;

#define maxn 200010

char A[maxn], B[maxn], s[maxn << 1];
int R[maxn << 1];
const ulint mod = 1e9 + 10071;

set<pair<ulint, ulint> > S;

ulint H[maxn], xp[maxn];
ulint H2[maxn], xp2[maxn];
const ulint seed = 300007uLL;
const ulint seed2 = 500009uLL;

void initHash(char *s, int n)
{
H[0] = (ulint)(s[0] - 'a' + 1);
for(int i = 1; i < n; i++)
H[i] = (H[i - 1]*seed % mod + (ulint)(s[i] -'a' + 1)) % mod;
return;
}

void initHash2(char *s, int n)
{
H2[0] = (ulint)(s[0] - 'a' + 1);
for(int i = 1; i < n; i++)
H2[i] = H2[i - 1]*seed2 + (ulint)(s[i] - 'a' + 1);
return;
}

{
if(l == 0)
return H[r];
else
return (H[r] - H[l - 1]*xp[r - l + 1] % mod + mod) % mod;
}

{
if(l == 0)
return H2[r];
else
return H2[r] - H2[l - 1]*xp2[r - l + 1];
}

int wa[maxn], wb[maxn], wv[maxn], Ws[maxn];

int cmp(int *r, int a, int b, int l)
{
return r[a] == r[b] && r[a + l] == r[b + l];
}

void da(int *r, int *sa, int n, int m)
{
int *x = wa, *y = wb, *t, i, j, p;
for(i = 0; i < m; i++) Ws[i] = 0;
for(i = 0; i < n; i++) Ws[x[i] = r[i]]++;
for(i = 1; i < m; i++) Ws[i] += Ws[i - 1];
for(i = n - 1; i >= 0; i--) sa[--Ws[x[i]]] = i;
for(j = 1, p = 1; p < n; j <<= 1, m = p)
{
for(p = 0, i = n - j; i < n; i++) y[p++] = i;
for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j;
for(i = 0; i < n; i++) wv[i] = x[y[i]];
for(i = 0; i < m; i++) Ws[i] = 0;
for(i = 0; i < n; i++) Ws[wv[i]]++;
for(i = 1; i < m; i++) Ws[i] += Ws[i - 1];
for(i = n - 1; i >= 0; i--) sa[--Ws[wv[i]]] = y[i];
for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
}
return;
}

int rank[maxn], height[maxn];
void calheight(int *r, int *sa, int n)
{
int i, j, k = 0;
for(i = 1; i <= n; i++) rank[sa[i]] = i;
for(i = 0; i < n; height[rank[i++]] = k)
for(k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++);
return;
}

int dp[maxn][20];
void initRMQ(int n)
{
for(int i = 1; i <= n; i++) dp[i][0] = height[i];
for(int j = 1; (1 << j) <= n; j++)
for(int i = 1; i + (1 << j) - 1 <= n; i++)
dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
return;
}

{
//int ra = rank[a], rb = rank[b];
int ra = a, rb = b;
if(ra > rb) swap(ra, rb);
int k = 0;
while((1 << (k + 1)) <= rb - ra + 1) k++;
return min(dp[ra][k], dp[rb - (1 << k) + 1][k]);
}

int calCnt(int l, int r, int n)
{
int rl = rank[l];
int lmost = rl, rmost = rl;
int L = rl + 1, R = n, mid;
while(L <= R)
{
mid = (L + R) >> 1;
if(askRMQ(rl + 1, mid) >= r - l + 1)
{
L = mid + 1;
rmost = mid;
}
else
R = mid - 1;
}
L = 1, R = rl - 1;
while(L <= R)
{
mid = (L + R) >> 1;
if(askRMQ(mid + 1, rl) >= r - l + 1)
{
R = mid - 1;
lmost = mid;
}
else
L = mid + 1;
}
return rmost - lmost + 1;
}

vector <pair<int, int> > pal;

void Manacher(char *s, int *R, int n)
{
int mx = 0, p = 0;
R[0] = 1;
S.clear(), pal.clear();
for(int i = 1; i < n; i++)
{
if(mx > i) R[i] = min(R[2*p - i], mx - i);
else R[i] = 1;
while(s[i - R[i]] == s[i + R[i]])
R[i]++;
if(i + R[i] > mx)
{
for(int j = mx; j < i + R[i]; j++)
{
int l = 2*i - j, r = j;
l >>= 1;
r = (r & 1) ? r >> 1 : (r >> 1) - 1;
if(l > r) continue;
set<pair<ulint, ulint> > :: iterator it = S.find(make_pair(hashvalue1, hashvalue2));
if(it == S.end())
{
S.insert(make_pair(hashvalue1, hashvalue2));
pal.push_back(make_pair(l, r));
}
}
mx = i + R[i], p = i;
}
}
return;
}

map<pair<ulint, ulint> , int> Ma, Mb;
int ss[maxn], sa[maxn];

int main()
{
xp[0] = 1uLL;
xp2[0] = 1uLL;
for(int i = 1; i < maxn; i++)
xp[i] = xp[i - 1]*seed % mod, xp2[i] = xp2[i - 1]*seed2;
int T;
scanf("%d", &T);
for(int cas = 1; cas <= T; cas++)
{
scanf("%s", A);
scanf("%s", B);
int la = strlen(A), lb = strlen(B);

initHash(A, la);
initHash2(A, la);
s[0] = '@';
for(int i = 0; i < la; i++)
s[2*i + 1] = A[i], s[2*i + 2] = '#', ss[i] = A[i] - 'a' + 1;
s[2*la] = '$'; ss[la] = 0; Manacher(s, R, 2*la); da(ss, sa, la + 1, 280); calheight(ss, sa, la); initRMQ(la); Ma.clear(); for(unsigned int i = 0, sz = pal.size(); i < sz; i++) Ma[make_pair(askHash(pal[i].first, pal[i].second), askHash2(pal[i].first, pal[i].second))] = calCnt(pal[i].first, pal[i].second, la); initHash(B, lb); initHash2(B, lb); s[0] = '@'; for(int i = 0; i < lb; i++) s[2*i + 1] = B[i], s[2*i + 2] = '#', ss[i] = B[i] -'a' + 1; s[2*lb] = '$';
ss[lb] = 0;
Manacher(s, R, 2*lb);
da(ss, sa, lb + 1, 28);
calheight(ss, sa, lb);
initRMQ(lb);
Mb.clear();
for(unsigned int i = 0, sz = pal.size(); i < sz; i++)

lint ans = 0;
for(map<pair<ulint, ulint> , int> :: iterator it = Ma.begin(); it != Ma.end(); it++)
if(Mb[(*it).first] != 0)
ans += (lint)(*it).second*(lint)Mb[(*it).first];
printf("Case #%d: %I64d\n", cas, ans);
}
return 0;
}

Palindromic Tree的做法：

Result  :  Accepted     Memory  :  53608 KB     Time  :  327 ms

/*
* Author: Gatevin
* Created Time:  2015/3/31 17:08:38
* File Name: Rin_Tohsaka.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;

#define maxn 200010

struct Palindromic_Tree
{
struct node
{
int next[26];
int len;
int times;//记录这个node代表的回文串出现的次数
};
node tree[maxn];
int L, len, suff;
char s[maxn];
void newnode()
{
L++;
for(int i = 0; i < 26; i++)
tree[L].next[i] = -1;
tree[L].len = tree[L].sufflink = tree[L].times = 0;
return;
}
void init()
{
L = 0, suff = 2;
newnode(), newnode();
tree[1].len = -1; tree[1].sufflink = 1;
tree[2].len = 0; tree[2].sufflink = 1;
return;
}
{
int cur = suff, curlen = 0;
int alp = s[pos] - 'a';
while(1)
{
curlen = tree[cur].len;
if(pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos])
break;
}
if(tree[cur].next[alp] != -1)
{
suff = tree[cur].next[alp];
tree[suff].times++;
return false;
}
newnode();
suff = L;
tree[L].len = tree[cur].len + 2;
tree[cur].next[alp] = L;
if(tree[L].len == 1)
{
tree[L].times++;
return true;
}
while(1)
{
curlen = tree[cur].len;
if(pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos])
{
break;
}
}
tree[L].times++;
return true;
}
void count()
{
for(int i = L; i > 0; i--)
return;
}
void build()
{
init();
scanf("%s", s);
int length = strlen(s);
for(int i = 0; i < length; i++)
count();
return;
}
};

Palindromic_Tree A, B;

/*
* dfs从两份树的奇偶根节点开始向下, 有相同的回文串就加上数量乘积
* 只有有相同的才继续向下找
*/
lint dfs(int nowA, int nowB)
{
lint ret = 0;
for(int i = 0; i < 26; i++)
if(A.tree[nowA].next[i] != -1 && B.tree[nowB].next[i] != -1)
ret += (lint)A.tree[A.tree[nowA].next[i]].times * (lint)B.tree[B.tree[nowB].next[i]].times
+ dfs(A.tree[nowA].next[i], B.tree[nowB].next[i]);
return ret;
}

int main()
{
int T;
scanf("%d", &T);
for(int cas = 1; cas <= T; cas++)
{
A.build();
B.build();
lint ans = dfs(1, 1) + dfs(2, 2);
printf("Case #%d: %I64d\n", cas, ans);
}
return 0;
}