题目大意:
就是在M个站中选择至多K个使得N个点被覆盖, 为需要的最小半径
大致思路:
二分答案R, 然后建立N*M的01矩阵判断重复覆盖是否可行
重复覆盖和精确覆盖不同, 每次只会删掉每一列所有相关的1, 而不会将有相关1的行删去, 所以矩阵在减少的速度上没有精确覆盖快, 需要进行剪枝
这里使用一个估价函数f(), 表示单签状况下最好情况需要多少步才能走完, 进行剪枝
代码如下:
Result : Accepted Memory : 1656 KB Time : 62 ms
/*
* Author: Gatevin
* Created Time: 2015/10/4 18:10:46
* File Name: Sakura_Chiyo.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
#define maxnode 4000
#define maxn 60
#define maxm 60
pair<int, int> city[60];
pair<int, int> sta[60];
struct DLX
{
int n, m, size;
int U[maxnode], D[maxnode], R[maxnode], L[maxnode], Row[maxnode], Col[maxnode];
int H[maxn], S[maxm];
int ansd, ans[maxn];
void init(int _n, int _m)
{
n = _n;
m = _m;
for(int i = 0; i <= m; i++)
{
S[i] = 0;
U[i] = D[i] = i;
L[i] = i - 1;
R[i] = i + 1;
}
R[m] = 0; L[0] = m;
size = m;
for(int i = 1; i <= n; i++) H[i] = -1;
}
void Link(int r, int c)
{
++S[Col[++size] = c];
Row[size] = r;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r] < 0) H[r] = L[size] = R[size] = size;
else
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
}
void remove(int c)//因为是重复覆盖每次讲某一列的所有1纳入不考虑范围
{
//L[R[c]] = L[c]; R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
L[R[i]] = L[i], R[L[i]] = R[i];
}
void resume(int c)
{
for(int i = U[c]; i != c; i = U[i])
L[R[i]] = R[L[i]] = i;
//L[R[c]] = R[L[c]] = c;
}
bool v[60];
int f()//A*搜索估价函数
{
int ret = 0;
for(int i = R[0]; i != 0; i = R[i]) v[i] = 1;
for(int i = R[0]; i != 0; i = R[i])
if(v[i])
{
ret++;
v[i] = 0;
for(int j = D[i]; j != i; j = D[j])
for(int k = R[j]; k != j; k = R[k])
v[Col[k]] = 0;
}
return ret;
}
int Dance(int dep, int K)
{
if(dep + f() > K) return false;
if(R[0] == 0)
{
return true;
}
int c = R[0];
for(int i = R[0]; i != 0; i = R[i])
if(S[i] < S[c])
c = i;
for(int i = D[c]; i != c; i = D[i])
{
for(int j = R[i]; j != i; j = R[j]) remove(j);
remove(i);
if(Dance(dep + 1, K)) return true;
resume(i);
for(int j = L[i]; j != i; j = L[j]) resume(j);
}
return false;
}
void solve()
{
int N, M, K;
scanf("%d %d %d", &N, &M, &K);
for(int i = 1; i <= N; i++)
scanf("%d %d", &city[i].first, &city[i].second);
for(int j = 1; j <= M; j++)
scanf("%d %d", &sta[j].first, &sta[j].second);
double L = 0, R = 1500, mid = -1, ans = -1;
int cnt = 0;
int times = 40;
while(L + eps < R && cnt <= times)
{
cnt++;
mid = (L + R) / 2.;
init(M, N);
for(int i = 1; i <= M; i++)
for(int j = 1; j <= N; j++)
if((sta[i].first - city[j].first)*(sta[i].first - city[j].first)*1.
+ (sta[i].second - city[j].second)*(sta[i].second - city[j].second)*1. < mid*mid)
Link(i, j);
if(Dance(0, K))
{
ans = mid;
R = mid;
}
else L = mid;
}
printf("%.6f\n", ans);
return;
}
};
DLX dlx;
int main()
{
int T;
scanf("%d", &T);
while(T--)
dlx.solve();
return 0;
}