题目大意:
就是一个30个点的图, 有边权, 求从点1出发经过所有点的最小罚时
每个点(起点除外)有一个期限, 不能再超过这个期限的时间到达
大致思路:
首先这就是一个旅行商问题加上了一个最后期限的限制
不过这个题使用搜索求解
首先用floyed处理出每两个点之间的最小时间花费
需要较多的剪枝才能通过
1. 对于当前位置接下来直接去某个点都无法满足在期限前到达, 直接返回
2. 对于当前已经花费的时间在最好情况下都不能比已经找到的罚时少, 返回
这上面两条足够通过这题了...
代码如下:
Result : Accepted Memory : 1736 KB Time : 546 ms
/*
* Author: Gatevin
* Created Time: 2015/10/6 17:06:39
* File Name: Sakura_Chiyo.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
int dis[50][50];
int n;
int dead[50];
bool vis[50];
int ans;
void dfs(int now, int cost, int dep, int all)
{
if(all + (n - dep)*cost >= ans) return;
for(int i = 1; i <= n; i++)
if(!vis[i] && cost + dis[now][i] > dead[i]) return;
if(dep == n)
{
//cout<<now<<" "<<cost<<" "<<dep<<endl;
ans = min(ans, all);
return;
}
for(int i = 1; i <= n; i++)
{
if(!vis[i] && cost + dis[now][i] <= dead[i])
{
vis[i] = 1;
dfs(i, cost + dis[now][i], dep + 1, all + cost + dis[now][i]);
vis[i] = 0;
}
}
return;
}
int main()
{
while(~scanf("%d", &n))
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
scanf("%d", &dis[i][j]);
dead[1] = 1e9;
for(int i = 2; i <= n; i++)
scanf("%d", &dead[i]);
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
memset(vis, 0, sizeof(vis));
vis[1] = 1;
ans = 1e9;
dfs(1, 0, 1, 0);
printf("%d\n", ans == 1e9 ? -1 : ans);
}
return 0;
}