K近邻分类算法

K-近邻(K-Nearest Neighbors, KNN)是一种很好理解的分类算法,简单说来就是从训练样本中找出K个与其最相近的样本,然后看这K个样本中哪个类别的样本多,则待判定的值就属于这个类别。


KNN算法的步骤

  • 计算已知类别数据集中每个点与当前点的距离;
  • 选取与当前点距离最小的K个点;
  • 统计前K个点中每个类别的样本出现的频率;
  • 返回前K个点出现频率最高的类别作为当前点的预测分类。

举例:如下图所示,已知两类不同的样本数据,分别用蓝色的正方形红色三角形表示,而图正中间的那个绿色的圆是待分类的数据。


根据KNN算法可知:

  • 如果K=3,判定绿色待分类点属于红色的三角形一类。
  • 如果K=5,判定绿色待分类点属于蓝色的正方形一类。

可见,K值的选择会对K近邻的分类结果产生重大影响。

在应用中,K值一般取一个比较小的值,通常采用交叉验证法来选取最优的K值。


KNN的思想很好理解,也非常容易实现,同时分类结果较好,对异常值不敏感。但计算复杂度较高,不适于大数据的分类问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值