在目标检测当中,有一个重要的概念就是 IOU。一般指代模型预测的 bbox 和 Groud Truth 之间的交并比。
何为交并比呢?
IOU = \frac{A\cap B}{A\cup B}IOU=A∪BA∩B
集合 A 和集合 B 的并集包括了上面 3 种颜色区域。
集合 C 是集合 A 与集合 B 的交集。
在目标检测当中,IOU 就是上面两种集合的比值。
A \cup BA∪B 其实就是 A + B - CA+B−C。
那么公式可以转变为:
IOU = \frac{A \cap B}{A + B - (A \cap B)}IOU=A+B−(A∩B)A∩B
IOU 衡量两个集合的重叠程度。
- IOU 为 0 时,两个框不重叠,没有交集。
- IOU 为 1 时,两个框完全重叠。
- IOU 取值为 0 ~ 1 之间的值时,代表了两个框的重叠程度,数值越高,重叠程度越高。
在 2D 目标检测当中,因为 bbox 是矩形,所以很容易求得 IOU。
方框 A 和 B 相交,典型的情况如下:
A 和 B 的面积容易求得,C 的面积稍微繁琐一点,但耐心细致的话可以求得。
如果利用数学思维,细心整理,可以发现面积 C 只需要求得边长的乘积就好,即使 A 和 B 的位置是相对的,但稍加变换也能够求出。
如果以 W 代表 A 和 B 的交集 C 的 x 轴方向上的边长,那么有
W = min(A.x_{1},B.x_{1}) - max(A.x_{0},B.x_{0})W=min(A.x1,B.x1)−max(A.x0,B.x0)
同理,
H = min(A.y_{1},B.y_{1}) - max(A.y_{0},B.y_{0})H=min(A.y1,B.y1)−max(A.y0,B.y0)
大家仔细观察上面的对应关系,可以发现公式是成立的。这个公式的推导并不难,无非是 4 个顶点的坐标的相对位置变换,大家可以自行琢磨。
如果 A 与 B 根本就不相交。
这个时候可以发现 W <= 0 或 H <= 0.
下面是 Python 代码。
class BBox:
def __init__(self,x,y,w,h):
self.x = x
self.y = y
self.w = w
self.h = h
def iou(a,b):
assert isinstance(a,BBox)
assert isinstance(b,BBox)
area_a = a.w * a.h
area_b = b.w * b.h
w = min(b.x+b.w,a.x+a.w) - max(a.x,b.x)
h = min(b.y+b.h,a.y+a.h) - max(a.y,b.y)
if w <= 0 or h <= 0:
return 0
area_c = w * h
return area_c / (area_a + area_b - area_c)
if __name__ == '__main__':
a = BBox(1,1,4,5)
b1 = BBox(1,1,4,5)
b2 = BBox(5,1,4,5)
b3 = BBox(3,2,3,6)
print("iou ",iou(a,b1))
print("iou ",iou(a,b2))
print("iou ",iou(a,b3))
运行结果如下:
iou 1.0
iou 0
iou 0.26666666666666666
再加上个DIOU 等等吧
还有GIOU相比iou的优点 哈哈