测试开源C#人脸识别模块DlibDotNet

文章讲述了作者在使用DlibDotNet进行人脸检测的过程中遇到的问题,包括二义性错误、图像数据类型转换和中文路径问题。通过解决这些问题,作者展示了如何在C#中使用DlibDotNet进行基本的人脸识别,并分享了关键代码和参考资源。
摘要由CSDN通过智能技术生成

  百度“C# 换脸”找到参考文献4,发现其中使用DlibDotNet检测并识别人脸(之前主要用的是ViewFaceCore),DlibDotNet是Dlib的.net封装版本,后者为开源C++工具包,支持机器学习算法、图像处理等算法以支撑各类高级应用,本文学习使用DlibDotNet识别人脸的基本方式,为后续学习和验证换脸打基础。
  VS2022中新建Winform项目,然后在Nuget包管理器中搜索并安装DlibDotNet相关包,根据参考文献1-3中的说明及示例,安装了DlibDotNet和DlibDotNet.Extensions

在这里插入图片描述
  安装上述包进行人脸检测没有问题,但是在程人脸检测后调用相关函数在图片中绘制人脸区域方框后转成微软的Bitmap类型对象时(调用DlibDotNet.Extensions.BitmapExtensions的扩展函数ToBitmap)始终存在问题。如果安装同时安装了DlibDotNet和DlibDotNet.Extensions,则编译不通过,会提示下图所示二义性错误,从GitHub上的源码中看,在DlibDotNet.Extensions项目中已经没有BitmapExtensions相关的文件了,不清楚为什么会报二义性错误,最终将DlibDotNet.Extensions卸载,仅安装DlibDotNet包,即可解决该问题。
在这里插入图片描述
  仅安装DlibDotNet包的话,编译不会出错,但在程序运行到ToBitmap函数时会提示NotSupportedException异常,后面翻ToBitmap的源码发现是使用的图像数据类型不对,将图像数据类型从Array2D修改为Array2D即可,主要支持RgbPixel、BgrPixel和RgbAlphaPixel这三种类型,其它类型的都会抛异常。
  人脸识别的关键代码如下所示,这里与测试ViewFaceCore的不同之处在于,ViewFaceCore返回的人脸位置信息是基于像素,可以直接调用微软的GDI+函数在窗口控件中先绘制图片再绘制人脸矩形,而detector.Operator函数返回的尺寸,暂时不清楚单位是什么,只能调用Dlib类中的相关函数将人脸矩形绘制到图片中,再将图片显示到窗口中。

using (var detector = Dlib.GetFrontalFaceDetector())
{
    using (Array2D<RgbPixel> img = Dlib.LoadImage<RgbPixel>(pnlImage.Tag.ToString()))
    {
        Dlib.PyramidUp(img);

        var dets = detector.Operator(img);
        txtResult.Text = String.Empty;
        txtResult.Text = $"识别到的人脸数量:{dets.Length} 个人脸信息:\n";

        foreach (var r in dets)
        {
            Dlib.DrawRectangle(img, r, new RgbPixel(255, 0, 0));
        }
        m_image = img.ToBitmap<RgbPixel>();//或者调用BitmapExtensions.ToBitmap(img)
    }

  测试过程中还遇到图片文件路径不能有中文,否则也会报错,暂不清楚是否是未设置编码造成的,将文件路径中的中文消除后即可正常加载图片。
在这里插入图片描述

  最后是程序运行效果,如下图所示:
在这里插入图片描述

参考文献:
[1]https://github.com/takuya-takeuchi/DlibDotNet
[2]https://github.com/takuya-takeuchi/FaceRecognitionDotNet
[3]https://github.com/takuya-takeuchi/DlibDotNet/tree/master/examples/FaceDetection
[4]https://blog.csdn.net/lw112190/article/details/131791878
[5]https://blog.csdn.net/Raink_LH/article/details/102831453

代码是调用开源SDk的FaceCore关键代码。附件中有详细的接口调用说明 FaceCore人脸识别开放平台 (SERVICE INTERFACE PLATFORM)是基于人脸检测、比对核心业务技术的服务平台。平台可为外部合作伙伴提供基于高精度人脸识别技术为基础的相关服务,例如Api、人脸识别、数据安全等。作为人脸识别的重要开发途径,FaceCore平台将推动各行各业定制、创新、进化,并最终促成新商业文明生态圈的建立。我们的使命是把人脸识别技术、规范等一系列核心技术基础服务,像水、电、煤一样输送给所有需要的合作伙伴、开发者、社区媒体、安全机构和各行各业。帮助社会各界通过使用此平台获得更丰厚的商业价值。 服务器测试接口: /api/hello/ 服务器测试接口,返回服务器当前时间。 人脸比对、识别接口: /api/facecompare/ 根据参数FaceFeature1,FaceFeature2获取两个人脸的相似度。 /api/facedetectcount/ 根据参数FaceImage,获取图像中的人脸数量。 /api/facedetect/ 根据参数FaceImage,获取图像中的人脸、眼睛位置和特征。 /api/urlfacedetect/ 根据参数Url,获取图像中的人脸、眼睛位置和特征。 人脸存储管理接口: /api/personface/similar/ Method:POST;根据参数Feature人脸特征,返回appkey存储的全部人脸相似度。 /api/personface/getall/ Method:GET;返回appkey存储的全部人脸。 /api/personface/{id} Method:GET;返回指定id人脸详细信息。 /api/personface/ Method:POST;添加一个人脸信息。 /api/personface/ Method:PUT;修改一个人脸信息。 /api/personface/{id} Method:DELETE;删除一个人脸信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值