Some scenarios where a stack is typically the appropriate data structure to use:
1. Parentheses Matching: Problems that require checking for balanced parentheses or brackets often utilize stacks to ensure that every opening bracket has a corresponding closing bracket.
2. Depth-First Search (DFS): When traversing trees or graphs, a stack can be used to implement DFS iteratively, allowing you to explore nodes in a last-in, first-out manner.
3. Backtracking: In problems that require exploring all possible configurations (like permutations or combinations), stacks can help manage the state as you backtrack through different paths.
4. Next Greater Element: Problems that require finding the next greater element for each element in an array can often be solved efficiently using a stack to keep track of indices.
5. Sorting: Some sorting problems, such as sorting a stack itself, can be approached using additional stacks to hold elements temporarily.
6. Expression Evaluation: Evaluating postfix or infix expressions can be effectively handled using stacks to manage operators and operands.
7. Sliding Window Problems: In certain sliding window problems, stacks can help maintain the order of elements and efficiently compute results based on the current window.
8. History Tracking: Problems that require tracking previous states or actions (like undo functionality) can utilize stacks to store and retrieve states in a manageable way.
In summary, whenever you encounter problems that involve nested structures, require backtracking, or need to maintain a specific order of operations, consider using a stack as your primary data structure.
For the remaining types of problems, please refer to my channel.