- 博客(158)
- 资源 (2)
- 收藏
- 关注
原创 git add和git commit了大文件导致上传不到github的撤销操作
在 .gitignore 配置好之后,你可以使用 git status 来确认文件是否被正确忽略。如果文件已被添加到 Git 跟踪中(即已被提交或暂存),Git 仍然会继续跟踪它们,即使你把它们添加到 .gitignore 中。然后需要设置.gitignore文件来忽略掉大文件后重新git add 和git commit。撤销git add和git commit操作(对于修改过的代码无影响)HEAD^代表撤销最近的一个,如果有多个就reset多几次。然后再git commit和git push就可以了。
2024-12-01 19:51:24
509
原创 Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering 论文阅读
近年来,大语言模型(LLM)的发展引起了学术界和工业界的广泛关注。将LLM部署到真实场景是当前互联网行业的重点方向之一。在本文中,我们提出了一种将LLM应用于特定领域问答(QA)的新颖管道,其中结合了领域知识图(KG),解决了LLM应用的一个重要方向。作为一个现实世界的应用程序,LLM生成的内容应该是用户友好的,以便为客户提供服务。此外,该模型需要正确利用领域知识来生成可靠的答案。这两个问题是LLM申请的两大难点,单纯的微调并不能充分解决。我们认为这两个需求可以统一为模型偏好问题。
2024-03-12 18:05:40
1210
1
原创 linux中git暂存,提交,上传到github
将id_rsa.pub内容设置到github中。后面是ssh地址 github中复制。从本地仓库push到远程仓库。查看id_rsa.pub。origin为名称,可改。
2024-03-09 18:39:25
687
原创 linux中conda环境下安装tensorflow-gpu以及报错问题解决
测试是否可以使用gpu:python若输出True则可使用gpu,False则不行。
2024-02-23 18:15:39
747
1
原创 Bert下载和使用(以bert-base-uncased为例)
下载config.json和pytorch_model.bin。在huggingface(
2024-02-06 12:55:28
18689
6
原创 JupyterLab 更换内核 使用 conda 虚拟环境
python -m ipykernel install --user --name 虚拟环境名称 --display-name 虚拟环境名称。
2024-02-04 18:02:36
1140
原创 Making Large Language Models Perform Better in Knowledge Graph Completion论文阅读
基于大语言模型(LLM)的知识图补全(KGC)旨在利用 LLM 预测知识图谱中缺失的三元组,并丰富知识图谱,使其成为更好的网络基础设施,这可以使许多基于网络的自动化服务受益。然而,基于LLM的KGC研究有限,缺乏对LLM推理能力的有效利用,忽略了KG中的重要结构信息,阻碍了LLM获取准确的事实知识。在本文中,论文中讨论如何将有用的知识图谱结构信息融入到LLM中,旨在实现LLM中的结构感知推理。论文中首先将现有的LLM范式转移到结构感知设置,并进一步提出知识前缀适配器(KoPA)来实现这一既定目标。
2024-01-23 17:22:35
1810
2
原创 安装node-sass报错,提示node-gyp -v 与node版本不符合解决办法
C:\Users{User}\AppData\Roaming\npm-cache(或%appdata%\npm-cache)C:\Users{User}\AppData\Roaming\npm(或%appdata%\npm)找到以前的安装目录,确保文件已经删干净,特别是npm和npm-cache,卸载程序是不会自己删的。先卸载干净再重新安装nodejs,注意版本要为14.xx.xx。下载nodejs的msi文件(windows系统)需要node版本为14.x.x。
2024-01-19 18:23:56
3474
原创 DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning论文阅读
DUET: Cross-Modal Semantic Grounding for Contrastive Zero-Shot Learning
2024-01-09 16:34:33
1509
1
原创 Neural axiom network for knowledge graph reasoning 论文精读
在本文中,我们提出了一种新的神经公理网络模型,**旨在对噪声知识图谱进行推理**。我们不仅考虑编码三元组的**结构**信息,而且考虑编码三元组的**公理**信息。具体来说,我们提出了一个用于**保留结构的知识图谱embedding模块和五个不同的公理模块,用于计算满足相应公理的概率得分。**我们在KG**噪声检测、三元组分类和链接预测**上对我们的方法进行了评估。实验表明,**公理信息可以使这些任务受益。**
2023-12-23 17:11:26
170
原创 linux中安装miniconda并解决conda:未找到命令的问题
Linux安装condaubuntu系统安装miniconda3以后找不到conda 命令linux-conda的安装与基本使用
2023-12-10 15:45:28
4825
原创 python基础(Python高级特性(切片、列表生成式)、字符串的正则表达式、函数、模块、Python常用内置函数、错误处理)培训讲义
python基础3(列表进阶、函数)1. Python高级特性(切片、列表生成式)2. 字符串的正则表达式3. 函数4. 模块5. Python常用内置函数6.错误处理 (可讲可不讲)
2023-11-04 17:42:14
802
原创 二、搜索与图论6:Dijkstra 模板题+算法模板(Dijkstra求最短路 I, Dijkstra求最短路 II,1003 Emergency)
二、搜索与图论6:Dijkstra 模板题+算法模板(Dijkstra求最短路 I, Dijkstra求最短路 II,1003 Emergency)
2023-08-03 19:03:43
2155
原创 《Federated Unlearning via Active Forgetting》论文精读
对机器学习模型隐私的⽇益关注催化了对机器学习的探索,即消除训练数据对数学学习模型影响的过程。这种担忧也出现在联邦学习领域,促使研究⼈员解决==联邦遗忘学习==问题。然⽽,联邦遗忘仍然具有挑战性。现有的遗忘⽅法⼤致可分为两种⽅法,即==精确遗忘和近似遗忘==。⾸先,以分布式⽅式实现精确遗忘(通常依赖于分区聚合框架)在理论上不会提⾼时间效率。其次,现有的联邦(近似)遗忘⽅法存在不精确的数据影响估计、⼤量的计算负担或两者兼⽽有之的问题。为此,该论文提出了⼀种==基于增量学习的新型联邦遗忘框架==,该框架独⽴于特定
2023-07-28 17:51:07
1369
2
原创 《FedCG:Leverage Conditional GAN for ProtectingPrivacy & MaintainingCompetitivePerformance in FL》论文精读
联邦学习(FL)旨在通过让客户端在不分享其私人数据、保护数据隐私的前提下协作建立机器学习模型。最近的一些研究证明了在联邦学习过程中交换的信息会受到基于梯度的隐私攻击,因此,各种隐私保护方法已被采用来阻止此类攻击,保护数据隐私。然而,这些防御性方法要么引入数量级更多的计算和通信开销(例如,同态加密),要么在预测准确性方面导致模型性能大幅下降(例如,使用差分隐私)。论文中提出了FedCG,将条件生成对抗网络与分割学习相结合,实现对数据的有效隐私保护,同时保持有竞争力的模型性能。
2023-07-27 16:38:02
499
原创 AI题目整理
Batch size是指一次迭代过程中,输入到神经网络的样本数量。①耗时长,训练效率低。②训练数据就会非常难收敛,从而导致欠拟合。①大的batchsize减少训练时间②大的batchsize所需内存容量增加③大的batch size梯度的计算更加稳定④大的batchsize可能导致模型泛化能力下降一般需要考虑训练速度、泛化误差和模型收敛性等因素,根据模型的复杂度、训练数据集的大小、计算资源的可用性等因素进行调整,并结合实际情况进行优化调整。
2023-04-29 22:45:28
3199
原创 一、基础算法6:双指针算法 模板题+算法模板(最长连续不重复子序列,数组元素的目标和,判断子序列)
一、基础算法6:双指针算法 模板题+算法模板(最长连续不重复子序列,数组元素的目标和,判断子序列)
2023-04-16 20:12:25
442
原创 Tableau Public的基本使用——以建立新冠疫情(COVID-19)数据可视化为例
Tableau Public的基本使用——以建立新冠疫情(COVID-19)数据可视化为例
2023-04-14 20:41:13
1471
原创 《Rank-LIME: Local Model-Agnostic Feature Attribution for Learning to Rank》论文精读
《Rank-LIME: Local Model-Agnostic Feature Attribution for Learning to Rank》论文精读理解总结,适合人工智能,机器学习等领域从业者与学习者借鉴与参考
2023-04-13 17:58:06
407
原创 一、基础算法5:前缀和与差分 模板题+算法模板(前缀和,子矩阵的和,差分,差分矩阵)
一、基础算法5:前缀和与差分 模板题+算法模板(前缀和,子矩阵的和,差分,差分矩阵)
2023-04-02 14:48:04
429
原创 一、基础算法4:高精度 模板题+算法模板(高精度加法,高精度减法,高精度乘法,高精度除法)
一、基础算法4:高精度 模板题+算法模板(高精度加法,高精度减法,高精度乘法,高精度除法)
2023-03-22 21:15:56
455
原创 一、基础算法1:快速排序 模板题+算法模板(快速排序,快速找出第k小的数)
一、基础算法1:快速排序 模板题+算法模板(快速排序,快速找出第k小的数)
2023-03-18 21:24:26
425
数字图像处理Python+PyQt5实现基于CLD算法的人脸检测源码+数据集
2022-11-02
JavaFX实现学生成绩管理系统(可运行)(综合实践大作业)
2022-02-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人