大数据可视化
关注大数据可视化的理论、方法以及技术,探讨基于Web的大数据可视化最佳实践。
Evan_Gu
专注大数据可视化和可视分析相关的理论、方法与技术,探索行业中最佳实践与应用。
展开
-
5款开源的Dashboard工具
Dashboard可以帮助我们快速的获取数据中的信息,高亮具有重要价值的信息。 如何更好的可视化数据是我们现在所面临的挑战,特别是融合分析的可视化,更加困难。幸运的是,有许多优秀的开源工具做的相当好,特对不同应用场景和数据类型。FreeboardFreeboard是一个dashboard工具,容易上手。基于JavaScript,提供拖拽功能,新的数据可以直接被添加进去。可以用于构建任何要求的das翻译 2017-06-01 10:52:17 · 38427 阅读 · 0 评论 -
21款Dashboards
什么是仪表面板(dashbards)?一种用于缩减数据集到距离,帮助用户着手处理真正关心问题的工具。根据 Perceptual Edge, Stephen Few描述dashboard是一个可视化显示器,用于可视化重要商业数据以完成分析目标。数据被整合并陈列在一个屏幕中,用于跟踪和监控。最实用的帮助是,数据可以自动更新显示而不需要人为操控。使用合适的bashboard,你将体验到引翻译 2017-05-31 23:00:14 · 4590 阅读 · 0 评论 -
信息可视化与可视化数据挖掘
Information Visualizationand Visual Data MiningDaniel A. Keim, Member, IEEE ComputerSociety摘要 历史上从来没有过像如今这么高量产生的数据。探索和分析大量的数据变得越来越难了。信息可视化和可视化数据挖掘可以帮助处理海量的信息。可视化数据探索的优点是用户直接参与数据挖掘过程。在过去的十年中,大量的可视化翻译 2015-03-28 17:43:26 · 2604 阅读 · 0 评论 -
Visualization领域研究以及会议分类
可视化 (Visualization) 借鉴Wiki 百科,包含一下几种含义:Mental imageCreative visualization (sports visualization)Motor imageryFlow visualization Geovisualization IllustrationI原创 2015-04-27 16:49:35 · 3374 阅读 · 0 评论 -
2015可视化大事件一览
2015可视化大事件一览2015,可视化会有什么新的发展、业界又有什么动态呢?看这个日历来跟踪学习吧。总的来看,四月是今年可视化活动及会议最丰富多彩的月份。二月2月9 — 11日 Developer Week 2015 旧金山旧金山科技周,话题丰富多样,包括node.js,python等串讲,并有hackathon等活动。2月8 — 12日转载 2015-05-12 11:24:03 · 1558 阅读 · 0 评论 -
2015年可视化研究前沿动态
2015年可视化研究前沿动态注: 利用Web of Science,分析当前可视化研究前沿,热点,与动态,新型技术。原创 2015-05-21 21:31:05 · 2624 阅读 · 0 评论 -
DIKW模型
在信息管理、信息系统和知识管理学科中,最基本的模型是DIKW(data, information, knowledge, wisdom)层次模型。 图 1 DIKW模型流程图(来源维基百科)数据从信号获取的角度看,数据是对目标观察和记录的结果,是关于现实世界中的时间、地点、事件、其他对象或概念的描述。在表达为有用的原创 2015-06-01 16:49:26 · 7457 阅读 · 0 评论 -
【数据可视化】数据可视化分类
数据可视化分为:科学可视化、信息可视化,可视化分析学这三个主要分支。 科学可视化,处理科学数据,面向科学和工程领域的科学可视化,研究带有空间坐标和几何信息的三维空间测量数据、计算模拟数据和医疗影像数据等,重点探索如何有效地呈现数据中几何、拓扑和形状特征。信息可视化,处理对象是非结构化、非几何的抽象数据,如金融交易、社交网络和文本数据,其核心挑战是如何针对大尺度高维数据减少视觉混淆对有用信原创 2015-06-01 22:03:10 · 13072 阅读 · 0 评论 -
【数据可视化】可视分析流程
图1是典型的可视分析流程图,起点是输入的数据,终点是提炼的知识。同样,从数据到知识,知识再到数据,数据再到知识的循环过程。从数据到知识有两个途径:交互的可视化方法和自动的数据挖掘方法。这两个途径的中间结果分别是对数据的交互可视化结果和从数据中提炼的数据模型。用户既可以对可视化结果进行交互的修正,也可以调节参数以修正模型。从数据中洞悉知识的过程也主要依赖两条主线的互动与协作[1,2]。原创 2015-06-02 20:40:09 · 10572 阅读 · 0 评论 -
【数据可视化】大规模多变量空间数据场可视化
多维度(multi-dimensional)、多变量(multi-variate)、多模态(multi-modal)、多趟(multi-run)与多模型(multi-model)。多维度表达物理空间中独立变量的维数;多变量表达变量和属性的数目,表示数据所包含信息和属性的多寡;多模态强调获取数据的方法不同,以及各自对应的数据组织结构和尺度的不同;多趟和多模型亦可表示数据所含信息,但和多变量属于不同的原创 2015-06-30 17:47:25 · 3780 阅读 · 0 评论 -
【数据可视化】大规模多变量空间数据场可视化2
3 空间向量场数据可视化 向量场数据在科学计算和工程应用中占有非常重要的地位,如飞机设计、气象预报、桥梁设计、海洋大气建模、计算流体动力学模拟和电磁场分析等。向量场的每个采样点处理的数据是一个向量,表达的方向性催生了与标量场完全不同的可视化方法。向量场可视化的主要目标是:展示场的导向趋势信息;表达场中的模式;识别关键特征区域。通常,向量场数据来源于数据值模拟,如计算流体力学(原创 2015-07-11 22:27:21 · 3719 阅读 · 0 评论 -
【数据可视化】 时变数据可视化
时间是一个非常重要的维度和属性,随时间变化、带有时间属性的数据称为时变数据。处理时变型数据的方法有时候又与顺序型数据有想通之处。从宏观上看,数据类型包括数值型、有序型和类别型三类。其中,任意两个有序型数据之间都具有某种顺序关系,而数值型数据可看成某种有具体数值的有序型数据。 ①以时间轴排列的时间序列数据,如:个人摄像机采集的视频序列、各种传感器设备获取的监控数据和故事股票交易数据、原创 2015-07-12 17:19:53 · 6247 阅读 · 0 评论 -
【数据可视化】流数据可视化
流数据可视化 流数据是一种特殊的时变型数据,输入数据并不存储在可随机访问的磁盘或内存中,而是以一个或多个“连续数据流”的形式到达。常见的流数据有移动通信日志、网络数据(日志、传输数据包、警报等)、高性能集群平台日志、传感器网络记录、金融数据(如股票市场)、社交数据等。 处理流数据与传统的数据池处理方法相比,有以下特点:1. 数据流的潜在大小也许是无限原创 2015-07-12 21:43:19 · 5298 阅读 · 0 评论 -
【数据可视化】复杂高维多元数据的可视化
1 高维多元数据 每个数据对象有两个或两个以上独立或者相关属性的数据。高维指数据具有多个独立属性,多元指数据具有多个相关属性。由于研究者在很多情况下不确定数据的属性是否独立,因此通常简单地称之为多元数据。例如:电脑配置。 高维多元数据(Multidimensional Multivariate Data)的可视化挑战对于高维多元数据,以统计和基本原创 2015-07-13 18:41:28 · 11329 阅读 · 0 评论 -
【数据可视化】地理信息可视化应用
1 地球与生存环境 人类长期以来对地球和周遭自然环境进行观测来研究和了解自己生存的自然空间,科学家们也通过建立数学模型来模拟环境的变化。这些观测和模拟得到的数据通常包含了地理空间中的位置信息,因此自然需要用到地理信息可视化来呈现数据,最常见的是与气象相关的数据。 图1 基于实测数据的全美风势可视化。http://hint.fm/wind/gallery/o原创 2015-07-14 20:45:31 · 9187 阅读 · 0 评论 -
ChinaVis2015 第一天会议
第二届 ChinaVis 2015 在天津举行,很幸运发现者个会议,并在导师的带领下参与本次会议。 主要要是以可视化与可视分析为背景进行讲座,以马匡六为Speaker,袁晓如,张加万等致辞开幕式。 会议首先是以马匡六的Emerging of Network Visualization为主题来讲解可视化研究前沿。 主要讲解了动态原创 2015-07-17 23:27:54 · 1354 阅读 · 0 评论 -
ChinaVis 2015 第二天
第二届 ChinaVis 2015 在天津举行,很幸运发现这个会议,并在导师的带领下参与本次会议。 18号这天,主要以工业会议为主,参加的单位有 海运数据,奇虎360 天眼实验室,Tableau 海云数据 以大数据可视化的思维为主题,从可视化的含义,到数据可视化的流程,并介绍了其公司的几个案例,该公司----海云数据(HYDATA)原创 2015-07-20 17:52:00 · 1841 阅读 · 0 评论 -
China Vis 2015 会议小结
China Vis 2015 Paper有6个分会场,主要有 1、天气、气象、灾害可视化; 2、文本可视化应用; 3、树、网络,以及高维技术; 4、时空分析; 5、科学可视化与应用; 五个方面主题。 由于专业原因,我们主要集中在时空分析这原创 2015-07-23 21:48:42 · 1602 阅读 · 0 评论 -
现存的时间可视化方法
表1 分类综述各可视化的分类体系 理论 数据类型 任务型 可视化分类 Cleveland(1993) √ Shneiderman(1996) √ √ Buja (1996) √ Hinneburg(1999) √ Chi(2000) √ √Shneiderman(1996)对信息可视化的分原创 2015-08-02 09:45:56 · 1438 阅读 · 0 评论 -
A visual analytics framework for spatio-temporal analysis and modelling
A visual analytics framework for spatio-temporal analysis and modellingNatalia Andrienko · Gennady Andrienko本文设计一种可视分析的框架,可视探索时空数据,并创建时空数据模型。传统的可视化分析,主要是用来探索变化模式。我们都知道仅仅用电脑的自动方法或者仅仅交互可视化技术,不翻译 2015-08-13 17:17:10 · 1506 阅读 · 0 评论 -
Knowledge Generation Model for Visual Analytics
1 摘要可视分析使得人们能够分析大量的信息,为了支持复杂的决策和数据探索。人类作为一个中心的角色在知识产生的过程,从片段的证明到可视数据分析。虽然前者的研究提供了框架来产生这些过程,他们的范围通常聚焦很窄,所以他们不包含不同等级的不同视角。本文提供一个知识产生的可视分析模型,将这些分离的框架结合到一起,但是,仍然保留以前先进的模型(例如.KDD过程)来描述整个可视分析流程的个体片段。为了测原创 2015-08-14 22:11:18 · 1407 阅读 · 0 评论 -
Knowledge Generation Model for Visual Analytics 第二部分
2.2探索循环(Exploration Loop)探索循环描述分析师同一个可视化分析系统进行一系列互动行为(Action),如数据准备、建立模型、操控可视化结果等,观察和探索由此产生的反馈,并获得发现(Finding)。分析师的行为应当遵循分析的目标而展开。 2.2.1行为(Action)Actions可能考虑一方面用户不同的目标和任务,另一方面交互的可视化。根据最近交互分类。翻译 2015-08-17 22:22:54 · 801 阅读 · 0 评论 -
The Top 10 Challenges in Extreme-Scale Visual Analytics
The Top 10 Challenges in Extreme-Scale Visual AnalyticsPak Chung Wong,Pacific Northwest National LaboratoryHan-Wei Shen,Ohio State UniversityChristopher R. Johnson,University of UtahChao翻译 2015-08-19 21:52:29 · 1494 阅读 · 0 评论 -
可视化交互技术
1人机交互理论人机交互领域涉及到多个领域的学科,包括计算机科学、系统设计、以及行为科学。就基础的研究目标就是提升用户与计算机的交互:如何使得计算机善于接受用户的意图和需求。同时,交互技术要涉及到感知与认知的研究。 可视分析的目的是集成电脑和人的强项,一个可以交互的过程来提取数据中的知识。为了高效的在人与机器之间的任务进行转换,开发一种有效的用户交互,最小化人需要完成的认知模型与 计算机原创 2015-08-21 20:26:42 · 5369 阅读 · 0 评论 -
The science of interaction交互元素与知识构建过程的查询方式
The science of interaction摘要可视分析中增长的感知交互和查询无法摆脱。通过交互操作可视界面---分析的论述----构建、测试、精炼,及共享知识。本文反映可视化研究与开发会议中的交互挑战。识别最近可视分析研究典范,在真实的交互科学目标具有真实的进步,必须包括理论和可测试关于人与信息交互最合适机制。七个领域未来5年可视分析研究:普适,表征交互;获取用户意向性;基于知识原创 2015-08-25 21:35:37 · 765 阅读 · 0 评论 -
交互设计之Gestalt原则
1912年,Gestalt 心理学院(Gestalt School of Psychology)开始研究人类是如何从视觉信息中对模式进行感知的。观察了许多重要的视觉现象并编订了目录。格式塔理论明确地提出:眼脑作用是一个不断组织、简化、统一的过程,正是通过这一过程,才产生出易于理解、协调的整体。我们的视觉系统自动对视觉输入构建结构,并且在神经系统层面上感知形状,图形和物体,而不是只看到互不相连的边,原创 2015-08-30 16:56:29 · 3403 阅读 · 0 评论 -
网络图可视化工具
网络可视化工具Gephi 是一款开源免费跨平台基于JVM的复杂网络分析软件,其主要用于各种网络和复杂系统,动态和分层图的交互可视化与探测开源工具。可用作:探索性数据分析,链接分析,社交网络分析,生物网络分析等。 Gephi是一个应用于各种网络、复杂系统和动态分层图的交互可视化与探索平台,支持Windows、linux和Mac等各种操作系统。Gephi提供了各类代表性图布局方原创 2015-09-18 21:10:58 · 5448 阅读 · 0 评论 -
美国五大可视分析中心
美国西北太平洋国家实验室(http://www.pnnl.gov/)建立了5个区域性可视分析中心:斯坦福大学(http://vis.stanford.edu/)北卡罗来纳州立大学夏洛特分校和乔治亚理工大学(http://srvac.unnc.edu/)普度大学和印第安纳大学医学院(http://engineering.purdue.edu/purvac/)宾夕法尼亚州立大学()原创 2015-10-19 16:58:11 · 1071 阅读 · 0 评论 -
【ChinaVis2016】会议第一天
ChinaVis 2016 中国可视化与可视分析大会会议在长沙举行,也很有幸能再次参加本次会议,跟上次不同,这次确实融入到了会议中去了,自己投了一篇Poster,因而不再像上次那么陌生,反而有些情切。大会首先特邀嘉宾作报告,Dr. Torsten Möller,Visual Data Science - Advancing Science through Visual Reasoning在大数据背原创 2016-07-22 00:08:34 · 1658 阅读 · 0 评论 -
【ChinaVis2016】会议第二天小结
ChinaVis2016 第三届中国可视化与可视分析大会第二天的可视化相对于以一天来说仍然有不少重头戏。上午主要包含两块①可视化前沿报告 以及 ②数据可视分析挑战赛1 可视化前沿技术专题数据挑战赛不是本次小结重点,所以略过。下午,主要关注了图形 三个会场2 Graphs and NetworkGraph和Network 可视化,一直是领域关注的一个重要方向,很多数据和信息可以用图的方式来表达。这原创 2016-07-22 23:19:37 · 2469 阅读 · 2 评论 -
【ChinaVis2016】第三天小结
ChinaVis2016 第三届中国可视化与可视分析大会第三天 会议在上午基本结束,下午参观 国防科大的 天河二号 超级计算中心。主要关注了上午第一个特邀报告一 朱庆 教授 “测绘地理信息技术的演进与发展”1 测绘发展地理信息作为一种重要的基础性信息资源 导航定位信息化中的基本任务,1 面向大众手机用户的高精度、高可靠、高可用的室内外一体化定位导航体制,2 面向百亿级“人”和千亿级“物”的位原创 2016-07-25 16:35:11 · 1376 阅读 · 0 评论 -
Visualizing MTBD
An interactive exploration of Boston’s subway systemhttp://mbtaviz.github.io/转载 2016-07-27 19:35:59 · 582 阅读 · 0 评论