(精)Tableau数据可视化设计 实验报告

(精)Tableau数据可视化设计 实验报告

前言:此为《数据可视化设计》课程实验报告(个人重现版)。鉴于实验时发现教程所使用的Tablreau版本已经换代,且图片不清晰。故作此报告(当然由于当今软件迭代速度异常迅速,阅读时请注意此文的时效性)。

Tablreau官网:https://www.tableau.com/zh-cn
报告中所使用的Tablreau版本:Tablreau Desktop Professional Edition 2018.1.0(20181.18.0416.1335) 64位
参考书目:《大数据可视化》 周苏 等 编著

1、认识Tableau数据

简便、快速地创建视图和仪表板是Tableau的最大优点之一,我们将通过案例来展示Tableau创建、设计、保存视图和仪表板的基本方法和主要操作步骤,以了解Tableau支持的数据角色和字段类型的概念,熟悉Tableau工作区中的各功能区的使用方法和操作技巧,最终利用Tableau快速创建基本的视图。

案例样本数据中,指标为售电量,统计周期为2015年1月~2015年6月,数据存储为Excel文件,结构见图(其中指出了数据源数据与Tableau中数据的对应关系)。Excel表中共有6列变量,用电类别是对售电量市场的进一步细分,包括大工业、居民、非居民、商业等9类;当期值为统计周期对应时间的售电量;同期值为上一年相同月份的售电量;月度计划值为当月的计划值。

这里写图片描述

Excel数据源:2015年分省市售电量明细表

实例10-1

步骤1:打开Microsoft Excel,在其中输入数据建立Excel表格如图所示,并另存为“实例10-1.xlsx”。

步骤2:打开Tableau Dasktop,在Tableau“开始页面”中的“连接到-文件”栏中单击“Excel”,将Excel数据表“实例10-1”导入到Tableau中。

步骤3:在界面的左下方单击“工作表1”按钮,进入Tableau工作表工作区。

这里写图片描述

Tableau连接数据后会将数据显示在工作区的左侧,称之为数据窗口。数据窗口的顶部是数据源窗口,其中显示的是连接到Tableau的数据源。Tableau支持连接多个数据源,数据源窗口的下方分别为维度窗口和度量窗口,分别用来显示导入的维度字段和度量字段(Tableau将数据表中的一列变量称为字段)。

这里写图片描述

维度和度量是Tableau的一种数据角色划分,离散和连续是另一种划分方式。Tableau功能区对不同数据角色操作处理方式是不同的,因此了解Tableau数据角色十分必要。

1)维度和度量

度量窗口显示的数据角色为度量,往往是数值字段,将其拖放到功能区时,Tableau默认会进行聚合运算,同时,视图区将产生相应的轴。

维度窗口显示的数据角色为维度,往往是一些分类、时间方面的定性字段,将其拖放到功能区时,Tableau不会对其进行计算,而是对视图区进行分区,维度的内容显示为各区的标题。比如想展示各省售电量当期值,这时“省市”字段就是维度,“当期值”为度量,“当期值”将依据各省市分别进行“总计”聚合运算。

Tableau连接数据时会对各个字段进行评估,根据评估自动将字段放入维度窗口或度量窗口。通常Tableau的这种分配是正确的,但是有时也会出错。比如数据源中有员工工号字段时,工号由一串数字构成,连接数据源后,Tableau会将其自动分配到度量中。这种情况下,我们可以把工号从度量窗口拖放至维度窗口中,以调整数据的角色。例如将字段“当期值”转换为维度,只需将其拖放到维度窗口中即可。字段“当期值”前面的图标也会由绿色变为蓝色。

维度和度量字段有个明显的区别就是图标,即维度为蓝色,度量为绿色。实际上在Tableau作图时这种颜色的区别贯穿始终,当我们创建视图拖放字段到行功能区或列功能区时,依然会保持相应的两种颜色。

2)离散和连续

离散和连续是另一种数据角色分类,在Tableau中,蓝色是离散字段,绿色是连续字段。离散字段在行列功能区时总是在视图中显示为标题,而连续字段则在视图中显示为轴。

当期值为离散类型时,当期值中的每一个数字都是标题,字段颜色为蓝色。当期值为连续类型时,下方出现的是一条轴,轴上是连续刻度,当期值是轴的标题,字段颜色为绿色。离散和连续类型也可以相互转换,右键字段,在弹出框中就有“离散”和“连续”的选项,单击即可实现转换。

数据窗口中各字段前的符号用以标示字段类型。Tableau支持的数据类型包括文本、日期、日期和时间、地理值、布尔值、数字、地理编码等。

=# 即数字标志符号前加个等号,表示这个字段不是原数据中的字段,而是Tableau自定义的一个数字型字段。同理,=Abc是指Tableau自定义的一个字符串型字段。

Tableau会自动对导入的数据分配字段类型,但有时自动分配的字段类型不是我们所希望的。由于字段类型对于视图的创建非常重要,因此一定要在创建视图前调整一些分配不规范的字段类型。

步骤1:在本例中,字段“省市”和“统计周期”显示的字段类型都为字符串,而不是我们想要的地理和日期类型,这时就需要手动调整。调整方法为单击右侧小三角形(或者右键),在弹出的对话框中选择“地理角色”>“省/市/自治区”,这时“省市”便成了地理字段,并且在选择后度量窗口会自动显示相应的经纬度字段。

步骤2:对于“统计周期”,同样选择“更改数据类型”>“日期”即可。

可以发现在数据窗口有3个多出来的字段:记录数、度量名称和度量值。实际上,每次新建数据源都会出现这3个字段,其中记录数是Tableau自动给每行观测值赋值为1,可用以计数。

2、创建视图

下面我们来创建Tableau视图。一个完整的Tableau可视化产品由多个仪表板构成,每个仪表板由一个或多个视图(工作表)按照一定的布局方式构成,因此视图是一个Tableau可视化产品最基本的组成单元。

这里写图片描述

视图中的图形单元称为标记,比如圆图的一个圆点或柱形图的一根柱子,都是标记。

可以利用数据窗口中的数据字段来创建视图。Tableau作图非常简单,将数据窗口中的字段拖放到行、列功能区,Tableau就会自动依据相关功能将图形显示在下方视图区中,并显示相应的轴或标题。当使用卡和行列功能区进行操作时,图形的变化都会即时显示在视图区。

步骤1:以制作各省当期售电量柱形图为例,选定字段“省市”,拖放到列功能区,这时横轴就按照各省名称进行了分区,各省市成为了区标题。同理,拖放字段“当期值”到行功能区,这时字段会自动显示成“总计(当期值)”,视图区显示的便是售电量各省累计值柱形图。

步骤2:行列功能区可以拖放多个字段,例如可以将字段“同期值”拖放到“总计(当期值)”的左边,Tableau这时会根据度量字段“当期值”和“同期值”分别作出对应的轴。

这里写图片描述

步骤3:维度和度量都可以拖放到行功能区或列功能区,只是横轴、纵轴的显示信息会相应地改变,比如,可以单击工具栏上的“交换”按钮,将行、列上的字段互换,这时省市显示在纵轴,横轴变成了当期值和同期值。

这里写图片描述

步骤4:拖放度量字段“当期值”到功能区,字段会自动显示成“总计(当期值)”,这反映了Tableau对度量字段进行了聚合运算,缺省的聚合运算为总计。Tableau支持多种不同的聚合运算,如总计、平均值、中位数、最大值、计数等。如果想改变聚合运算的类型,比如想计算各省的平均值,只需在行功能区或列功能区的度量字段上,右键“总计(当期值)”或单击右侧小三角形,在弹出对话框中选择“度量”>“平均值”即可。 Tableau求平均值是对行数的平均。

这里写图片描述

创建视图时,经常需要定义形状、颜色、大小、标签等图形属性。在Tableau里,这些过程都将通过操作标记卡来完成,其上部为标记类型,用以定义图形的形状。Tableau提供了多种类型的图以供选择,缺省状态下为条形图。标记类型下方有5个像按钮一样的图标,分别为“颜色”、“大小”、“标签”、“详细信息”和“工具提示”。这些按钮的使用非常简单,只需把相关的字段拖放到按钮中即可,同时单击按钮还可以对细节、方式、格式等进行调整。此外还有3个特殊按钮,特殊按钮只有在选择了对应的标记类型时,才会显示出来。这3个特殊按钮分别是线图对应的“路径”、形状图形对应的“形状”、饼图对应的“角度”。

1)颜色、大小和标签

步骤1:针对图例,如果想让不同省市显示不同颜色,可利用标记卡中的颜色来完成,这只需将字段“省市”拖放到标记卡的“颜色”项即可。这时,卡功能区的下方会自动出现颜色图例,用以说明颜色与省市的对应关系。

这里写图片描述

步骤2:单击下方颜色图例右上角处,在弹出框中可以对颜色图例进行设置,如编辑标题、排序、设置格式等。其中单击选项“编辑颜色”,进入颜色编辑页面,可以对不同的区域自定义不同的颜色。

步骤3:如果要对视图中的标记添加标签,如将当期值添加为标签显示在图上,只需将字段“当期值”拖放到标签即可,如图所示。

这里写图片描述

步骤4:标签显示的是各省的当期值总计,如果想让标签显示各省当期值的总额百分比,可右键单击“标记”卡中的总计(当期值)或单击总计(当期值)右侧小三角标记,在弹出的对话框中选择“快速表计算”>“总额百分比”命令,这时视图中的标签将变为总额百分占比。此外,单击标签,可对标签的格式、表达方式等进行设置。

步骤5:设置大小和颜色与此类似,拖放字段到“大小”,视图中的标记会根据该字段改变大小。需要注意的是,颜色和大小只能放一个字段,但是标签可以放多个字段。

2)详细信息

详细信息的功能是依据拖放的字段对视图进行分解细化。

步骤6:我们以圆图为例,将“省市”拖放到列功能区,“当期值”拖放到行功能区,标记类型选择“圆”图,如图所示。这时每个圆点所代表的值其实是各个用电类别6个月的总和。

这里写图片描述

步骤7:将字段“用电类别”拖到标记卡的“详细信息”项,Tableau会依据“用电类别”进行分解细化,这时每个圆点变为多个圆点,每一个点代表相应省市某一用电类别的总和,如图所示。拖放字段“统计周期”到“详细信息”并选择按“月”(Tableau默认的是按“年”),这时每个点再次解聚,每个点表示该省某月某用电类别总和,如图所示。

这里写图片描述

这里写图片描述

其实,直接拖放到“标记”卡的下方就可以表示详细信息,并且颜色、大小、标签都具有与详细信息搭配使用的功能。

3)工具提示

步骤8:当鼠标移至视图中的标记上时,会自动跳出一个显示该标记信息的框,出现提示信息,这便是工具提示的作用。

步骤9:左键单击“工具提示”可以看到工具提示的内容,可对这些内容进行删除、更改格式、排版等操作。Tableau会自动将”标记”卡和行列功能区的字段添加到工具提示中,如果还需要添加其他信息,只需将相应的字段拖放到“标记”卡中。

有时候只想让Tableau展示数据的某一部分,如只看某个月份的售电量、只看某地区各省情况、只用电量大于某个值的数据等,这时可通过筛选器完成上述选择。拖放任一字段(无论维度还是度量)到筛选器卡里,都会成为该视图的筛选器。

步骤1:如果让视图里只显示大工业的点,只需要将字段“用电类别”拖放到筛选器卡里,这时Tableau会自动弹出一个对话框,单击“从列表中选择”选项就会显示“用电类别”的内容,这里可直接勾选想展现的用电类别,如大工业。单击“确定”后字段“用电类别”就显示在筛选器中了。

这里写图片描述

步骤2:Tableau提供了多种筛选方式,在筛选器上方可以看到“常规”、“通配符”、“条件”和“顶部”选项,每一个选项之下都有相应的筛选方式,这大大丰富了筛选操作形式。

将一个字段拖放到页面卡会形成一个页面播放器,播放器可让工作表更灵活。

步骤1:为了更好地展示页面功能,我们单击屏幕下方的“新建工作表”按钮新建一个工作表。

步骤2:拖放字段“统计周期”到列,Tableau默认“统计周期”为年,我们手动转换为月,拖放“当期值”到行,标记类型选择为圆。

步骤3:拖放字段“统计周期”到页面卡,这时页面卡下方会自动出现一个“年(统计周期)”的播放器。将日期的显示“年(统计周期)”调整为“月(统计周期)”。

这里写图片描述

步骤4:单击播放器的播放键,可以让视图动态播放出来,选择“显示历史记录”可以调整播放的效果。

在Tableau的右端有一个智能显示的按钮,单击展开,其中显示了24种可以快速创建的基本图形。将鼠标移动到任意图形上,下方都会显示做该图需要的字段要求,如将鼠标移动到符号地图上,下方会显示“1个地理维度,0个或多个维度,0至2个度量”,这表明创建该视图必须要一个地理类型的字段类型,度量不能超过2个。

步骤1:新建一个工作表。

步骤2:按照要求,将地理维度“省市”拖到行功能区,“当期值”拖放到列功能区,这时候发现智能显示的某些图形高亮了,高亮的图形表示用目前的字段可以快速创建的图形。单击智能显示中的“符号地图”,符号地图就创建完成了。这时,可以发现行、列功能区变为经、纬度字段,“省市”在“标记”卡中表示详细信息,符号大小表示“当期值”。

这里写图片描述

度量名称和度量值都是成对使用的,目的是将处于不同列的数据用一个轴展示出来。当想同时看各省当期值和同期值时,拖放“省市”到列功能区,再分别拖放“当期值”和“同期值”到行功能区,可以看到,图中出现了当期值和同期值两条纵轴。

下面我们利用度量值和度量名称来完成两列不同数据共用一个轴的操作。

步骤1:新建一工作表。

步骤2:拖放字段“省市”到列功能区,然后拖放度量值到行功能区,这时在左下方“度量值”区域会显示包含了哪些度量,Tableau默认的度量值会包含所有的度量。由于我们只需要当期值和同期值,因此,单击“行”上“度量值”右边的小三角形,选择“筛选器”,去掉记录数前面的钩,只保留当期值和同期值。

步骤3:将度量名称拖放到“颜色”,这时柱状图按颜色分成了当期值和同期值,二者共同一个纵轴。如果习惯将当期值和同期值分开为两个柱子,只需将度量名称拖放到列功能区,放置在省市的右边。

这里写图片描述

这里写图片描述

事实上,我们可以利用智能显示快速完成双柱图形,在智能显示里双柱图称为并排图,把鼠标放上去会显示完成该图需要“1个或多个维度,1个或多个度量,至少需要3个字段”。我们将“省市”拖放到列功能区,将“当期值”和“同期值”拖放到行功能区,这时并排图被高亮,单击即可完成。

3、创建仪表板

完成所有工作表的视图后,我们便可以将其组织在仪表板中了。

步骤1:单击下方的新建仪表板,进入到仪表板工作区。

这里写图片描述

步骤2:创建仪表板也是用拖放的方法,将创建好的工作表拖放到右侧排版区,并按照一定的布局排版好。

这里写图片描述

4、保存工作成果

创建完仪表板后,应当将结果保存在Tableau工作簿中。为此,选择“文件”>“保存”命令,进行保存。保存的类型可以是Tableau工作簿(*.twb),该类型将所有工作表及其连接信息保存在工作簿文件中但不包括数据;也可以是Tableau打包工作簿(*.twbx),该类型包含所有工作表、其连接信息以及任何其他资源如数据、背景图片等。

至此,我们以一个简单案例介绍了Tableau从连接数据到最后工作簿发布的过程,重点介绍了如何利用功能区创建视图,以便读者熟悉Tableau拖放的作图方法。

Tableau 数据可视化与实战 118课 课程目录: 第1章: Tableau数据可视化应用实战 1.本门课程目录 2.本门课程目标 3.Tableau概述_什么是数据可视化? 4.Tableau概述_如何用图表讲故事?(1) 5.Tableau概述_Tableau发展历程 6.Tableau概述_Tableau家族产品 7.Tableau概述_Tableau产品优势 8.Tableau新手上路_Tableau Desktop安装配置 9.Tableau新手上路_Tableau的导航与菜单 10.Tableau新手上路_Tableau设计流程最佳实践 11.Tableau新手上路_Tableau数据类型与文件 12.Tableau新手上路_Tableau数据源初探 13.Tableau初级篇_数据源深入_基本操作 14.Tableau初级篇_数据源深入_数据连接方式(实时vs提取) 15.Tableau初级篇_数据源深入_多表数据连接 16.Tableau初级篇_数据源深入_异构数据混合 17.Tableau初级篇_数据源深入_提取数据 18.Tableau初级篇_工作表_常规操作 19.Tableau初级篇_工作表_编辑元数据(更改数据类型) 20.Tableau初级篇_工作表_编辑元数据(列的重命名与隐藏) 21.Tableau初级篇_工作表_编辑元数据(别名) 22.Tableau初级篇_工作表_字段操作(合并字段) 23.Tableau初级篇_工作表_字段操作(分层字段) 24.Tableau初级篇_工作表_字段操作(字段分组) 25.Tableau初级篇_工作表_字段操作(字段拆分) 26.Tableau初级篇_工作表_字段操作(初识计算字段) 27.Tableau初级篇_工作表_演示集成员对总额的贡献程度如何? 28.Tableau初级篇_工作表_演示一个集内有多少成员存在于另一个集内(上) 29.Tableau初级篇_工作表_演示一个集内有多少成员存在于另一个集内(下) 30.Tableau初级篇_工作表_小结 31.Tableau中的函数与计算_运算符 32.Tableau中的函数与计算_数字函数 33.Tableau中的函数与计算_字符串函数 34.Tableau中的函数与计算_日期函数 35.Tableau中的函数与计算_聚合函数 36.Tableau中的函数与计算_类型转换函数 37.Tableau中的函数与计算_逻辑函数 (上) 38.Tableau中的函数与计算_逻辑函数 (下) 39.Tableau中的函数与计算_在Tableau中创建公式 4p.Tableau中的函数与计算_Tableau数值计算 41.Tableau中的函数与计算_Tableau字符串计算 42.Tableau中的函数与计算_Tableau日期计算 43.Tableau中的函数与计算_实例演示_表计算之差异计算 44.Tableau中的函数与计算_实例演示_表计算之百分比差异计算 45.Tableau中的函数与计算_实例演示_表计算之百分比计算 46.Tableau中的函数与计算_实例演示_表计算之总额百分比计算 47.Tableau中的函数与计算_实例演示_表计算之总额排名计算 48.Tableau中的函数与计算_实例演示_表计算之百分位计算 49.Tableau中的函数与计算_实例演示_表计算之汇总计算 50.Tableau中的函数与计算_实例演示_表计算之汇总计算(从属计算) 51.Tableau中的函数与计算_实例演示_表计算之移动计算 52.Tableau中的函数与计算_快速表计算 53.Tableau中的函数与计算_临时计算 54.Tableau中的函数与计算_小结 第2章: Tableau高级分析与项目实战 55.本门课程简介 56.Tableau中的排序与筛选器_手动排序 57.Tableau中的排序与筛选器_计算排序 58.Tableau中的排序与筛选器_如何创建与编辑筛选器 59.Tableau中的排序与筛选器_实例演示维度类型的筛选器 60.Tableau中的排序与筛选器_实例演示度量类型的筛选器 61.Tableau中的排序与筛选器_实例演示日期类型的筛选器 62.Tableau中的排序与筛选器_实例演示上下文类型的筛选器 63.Tableau中的排序与筛选器_实例演示条件筛选器 64.Tableau中的排序与筛选器_实例演示顶部筛选器 65.Tableau中的排序与筛选器_实例演示通配符筛选器 66.Tableau中的排序与筛选器_小结 67.Tableau中的参数_如何创建与修改参数? 68.Tableau中的参数_实例演示计算字段如何结合参数使用 69.Tableau中的参数_实例演示计算字段如何结合筛选器使用 70.Tableau中的参数_综合示例参数在视图中的运用(上) 71.Tableau中的参数_综合示例参数在视图中的运用(下) 72.Tableau图表分析_实例上手条形(柱状)图 73.Tableau图表分析_实例上手折线图 74.Tableau图表分析_实例上手饼状图 75.Tableau图表分析_实例上手散点图 76.Tableau图表分析_实例上手文本表 77.Tableau图表分析_实例上手热图 78.Tableau图表分析_实例上手直方图 79.Tableau图表分析_实例上手甘特图 80.Tableau图表分析_实例上手盒须图 81.Tableau图表分析_实例上手填充气泡图 82.Tableau地图绘制与图像_综述 83.Tableau地图绘制与图像_设置地理角色 84.Tableau地图绘制与图像_如何在自定义地理角色 85.Tableau地图绘制与图像_构建简单的地图视图 86.Tableau地图绘制与图像_构建简单的饼图视图 87.Tableau地图绘制与图像_示例创建显示定量值的地图 88.Tableau地图绘制与图像_法国巴黎地铁车站交通量蜘蛛图(上) 89.Tableau地图绘制与图像_法国巴黎地铁车站交通量蜘蛛图(下) 90.Tableau地图绘制与图像_西雅图、华盛顿中的自行车共享数据 91.Tableau高级图表类型_参考线 92.Tableau高级图表类型_参考区间 93.Tableau高级图表类型_分布区间 94.TableauTableau 仪表盘和故事_仪表盘详解(上) 95.TableauTableau 仪表盘和故事_仪表盘详解(下) 96.TableauTableau 仪表盘和故事_故事详解 97.TableauTableau 仪表盘和故事_关于仪表盘的最佳实践 98.TableauTableau 仪表盘和故事_关于如何讲述一个彩故事的最佳实践 99.项目一_教育网站指标评估_项目背景与需求分析 100.项目一_教育网站指标评估_制作【均分】视图 101.项目一_教育网站指标评估_制作【考试成绩】视图 102.项目一_教育网站指标评估_制作【学校教育水平评估】仪表盘 103.项目一_教育网站指标评估_制作【各维度比较】视图 104.项目一_教育网站指标评估_制作【城市地图】视图 105.项目一_教育网站指标评估_制作【城市教育水平评估】仪表盘 106项目一_教育网站指标评估_制作【教育网站指标评估】故事 107.项目二_网站用户行为分析_项目背景与需求分析 108.项目二_网站用户行为分析_详细设计与业务术语说明 109.项目二_网站用户行为分析_制作【按页面查看】视图 110.项目二_网站用户行为分析_制作【按媒介查看】静态视图 111.项目二_网站用户行为分析_制作【用户访问量】视图 112.项目二_网站用户行为分析_制作【用户访问行为分析】仪表盘 113.项目三_零售行业进销存分析_项目背景与需求分析 114.项目三_零售行业进销存分析_原始数据与素材准备 115.项目三_零售行业进销存分析_制作【货架图】视图 116.项目三_零售行业进销存分析_制作【各门店销售趋势】视图 117.项目三_零售行业进销存分析_制作【产品类别】视图 118.项目三_零售行业进销存分析_制作【货架分析报告】仪表盘
在Python中进行地理空间数据可视化实验通常涉及使用一些强大的库,如matplotlib、geopandas、folium和cartopy等。以下是一个简单的实验小结: 1. **导入所需库**:首先,我们需要导入`geopandas`(GeoPandas,基于Pandas的数据结构,专为地理空间数据设计)、`matplotlib`(基础绘图库)以及地图相关的库,如`folium`(用于交互式地图)或`cartopy`(提供高级的地图投影功能)。 ```python import geopandas as gpd import matplotlib.pyplot as plt from folium import Map, Marker ``` 2. **读取数据**:通常会使用`gpd.read_file()`函数从文件(如.shp或.geojson)或在线API获取地理数据,如行政区划、点状设施等。 3. **数据清洗和预处理**:对数据进行必要的清洗,如缺失值处理、数据类型转换等,确保数据适合可视化。 4. **基础地图绘制**:可以利用`folium.Map()`创建静态地图,并通过添加`Marker`对象标记特定位置。 ```python m = Map(location=[data['latitude'].mean(), data['longitude'].mean()], zoom_start=10) for index, row in data.iterrows(): Marker([row['latitude'], row['longitude']]).add_to(m) m.save('map.html') ``` 5. **数据散点图或热力图**:使用`geoplot`库或`seaborn`结合`scatterplot`绘制地理位置上的散点图,展示变量之间的关系;使用`geopandas.plotting`绘制点密度图(Heatmap)显示某个属性的分布。 6. **高级地图定制**:如果需要更复杂的地图,例如使用不同的投影,可以借助`cartopy`调整地图范围和坐标系统。 7. **结果分析和解释**:最后,根据可视化结果解读数据趋势,总结发现的问题或见解。 **相关问题--** 1. 你能举一个在实际项目中如何应用地理空间数据可视化的例子吗? 2. 怎样在Python中处理大规模地理数据以便于可视化? 3. 如何在动态地图上添加交互式信息窗口?
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值