贝叶斯规划学习BPL

本文探讨了深度学习和强化学习,强调了深度学习在大规模数据中的优势,以及强化学习在决策过程中的作用。接着介绍了类人概念学习,特别是小样本学习的代表——贝叶斯规划学习(BPL)。BPL利用参数的先验分布,通过小样本信息求得后验分布,能够在数据有限的情况下进行学习和推理。对比深度学习,BPL在数据量小但清晰的情境下更为有效。
摘要由CSDN通过智能技术生成
?深度强化学习:
    机器学习的分支:深度学习和强化学习。
    深度学习是一种机器学习中建模数据的隐含分布的多层表达的算法。换句话来说,深度学习算法自动提取分类中所需要的低层次或者高层次特征。因此深度学习能够更好的表示数据的特征,同时由于模型的层次、参数很多,容量也足够,因此,深度学习模型有能力表示大规模数据,所以对于图像、语音这种特征不明显的棘手问题,反而能够借助深度学习在大规模训练数据上取得更好的效果。而且由于深度学习将特征和分类器结合到一个框架中,用数据去学习特征,在使用中减少了手工提取特征的巨大工作量,因此,不仅仅效果可以更好,而且应用起来也非常方便。因此深度学习在图像识别和语音识别方面获得了巨大的进步。
  强化学习,其实,就是一个连续决策的过程,其特点是不给任何数据做标注,仅仅提供一个回报函数,这个回报函数决定当前状态得到什么样的结果(比如“好”还是“坏”),从数学本质上来看,还是一个马尔科夫决策过程。强化学习最终目的是让决策过程中整体的回报函数期望最优。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值