向量和矩阵的微分

对元素求导

列向量对元素求导

y=[y1,y2,...,yd]TRd,xR,yx=[y1x,y2x,,ydx]T

矩阵对元素求导

Y=[y11y1dyd1ydd]Rd×d,xR,Yx=[y11xy1dxyd1xyddx]


对向量求导

元素对向量求导

yR,x=[x1,x2,...,xd]TRd,yx=[yx1,yx2,,yxd]T

元素对矩阵求导

yR,X=[x11x1dxd1xdd]Rd×d,yX=[yx11yx1dyxd1yxdd]


列向量求导

列向量对列向量求导

y=[y1,,yd]TRd,x=[x1,x2,...,xd]TRdyx=[y1x,y2x,,ydx]T

先按列向量对元素求导,然后再按元素对列向量求导

列向量对矩阵求导

y=[y1,y2,,yd]Rd,X=[x11x1dxd1xdd]Rd×dyX=[y1X,,ydX]

先按列向量对元素求导,然后再按元素对举证求导


矩阵求导

矩阵对列向量求导

Y=[y11,yd1yd1ydd]Rd×d,x=[x1,x2,...,xd]TRdYx=[y11xy1dxy1dxyddx]

先矩阵对元素求导,然后再元素对列向量求导

矩阵对列向量求导

Y=[y11,yd1yd1ydd]Rd×d,X=[x11,xd1xd1xdd]=[x1,x2,...,xd]Rd×dYX=[Yx1,,Yxd]

先按元素对行向量求偏导,然后再往下继续求偏导。

对向量或矩阵 对 向量或矩阵的求导,可以利用元素对向量或矩阵求导,向量或矩阵对元素求导,将其拆分为多步。拆分顺序可变,最终都会得到相同的结果


向量和矩阵的乘积求导

aTxx=xTax=aAxx=ATxTAx=Axx=IxTBxx=(B+BT)xUTXVX=UVT

逆矩阵和行列式求导

Y1x=Y1YxY1det(X)X=det(X)(X1)T


复合函数求导

u=u(x)Aux=uxATu=u(x),v=v(x)uTvx=uTxv+vTxuT

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/geduo_feng/article/details/79948093
个人分类: 数学
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭