PySpark-推荐系统-RecommenderSystem

本文介绍了使用PySpark的ALS算法构建推荐系统的过程,包括推荐系统的基本概念、ALS算法原理及其实现。通过实例展示了如何利用用户和商品的属性信息进行矩阵分解,以达到推荐的目的。同时,讨论了推荐系统的分类,如基于内容、协同过滤等,并提供了MovieLens数据集的示例代码。
摘要由CSDN通过智能技术生成

更多信息https://blue-shadow.top/

书籍<<Python在大数据平台的应用>>
更多信息请关注本书附书代码:附书代码Github工程:https://github.com/Shadow-Hunter-X

推荐系统

自动推荐内容或产品以个性化的方式向适当的用户提供,以增强整体体验。推荐系统在术语上非常强大使用海量的数据,学会理解偏好。

对于PySpark中的“推荐系统”模块 pyspark.ml.recommendation module
官方文档链接:api/python/pyspark.ml.html#module-pyspark.ml.recommendation

spark 推荐系统的ALS 算法

  • 交替最小平方 (ALS) 矩阵分解:
    ALS 尝试将评级矩阵 R 估计为两个较低级别矩阵(X 和 Y,即 X = Yt = R)的乘积。一般方法是迭代。在每次迭代期间,一个因子矩阵保持不变,而另一个因子矩阵使用最小二乘求解。然后,在求解另一个因子矩阵时,新求解的因子矩阵保持不变。

  • 现实场景到推荐系统模型的转换 ; 构建模型 中的转换关系

    • 划分出推荐系统中参与的对象,如在线购物网站中,参与的主要对象是购物者和相关的商品。
    • 将这些对象的按维度属性进行划分,通过这些维度属性可以有效的表示这个对象。如购物者可以通过 年龄,性别,所住城市等这些属性进行表示。
    • 将对象通过对应的属性维度构建好后。假设每个对象可以通过一个函数表示,如: ax1 + bx2 + cx3 + dx4 = y 。为每个对象,依据分配的属性维度个数,构建有相同元的函数。
    • 通过不同对象个体的属性维度值构建矩阵,构建好不同对象的矩阵后,进行矩阵相乘。得到的新矩阵可以认为是每个购物者对相关物品的关联程度。
    • 由于对象的函数表示,是通过假设的,所以需要获取最优函数的办法,即通过使用最小二乘法来获取最佳函数。
  • 关于最小二乘法:
    它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
    最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

    通俗的说:在平面(也可再高维度空间种)上有若干点,需要使用一个函数来表示这些点;如何确定这个函数是最优的;通过在坐标系上,每个点到这个函数对应的图形的距离的和最小,
    由于拟合函数可以有很多种,但是求两点的具体方法:坐标值差的平方的和,后再开方。 把这些值都加起来后求最小情况,就是最小二乘法。

使用最小二乘法的,不同拟合曲线:
fitted

推荐系统的分类

基于内容推荐
基于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料

协同过滤推荐
协同过滤推荐(Collaborative Filtering Recommendation)技术是推荐系统中应用最早和最为成功的技术之一。它一般采用最近邻技术,利用用户的历史喜好信息计算用户之间的距离,然后 利用目标用户的最近邻居用户对商品评价的加权评价值来预测目标用户对特定商品的喜好程度,系统从而根据这一喜好程度来对目标用户进行推荐

基于关联规则推荐
基于关联规则的推荐(Association Rule-based Recommendation)是以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零 售业中已经得到了成功的应用

基于知识推荐
基于知识的推荐(Knowledge-based Recommendation)在某种程度是可以看成是一种推理(Inference)技术,它不是建立在用户需要和偏好基础上推荐的。基于知识的方法因 它们所用的功能知识不同而有明显区别

组合推荐
由于各种推荐方法都有优缺点,所以在实际中,组合推荐(Hybrid Recommendation)经常被采用。研究和应用最多的是内容推荐和协同过滤推荐的组合。最简单的做法就是分别用基于内容的方法和协同过滤推荐方法 去产生一个推荐预测结果,然后用某方法组合其结果

基于效用推荐
基于效用的推荐(Utility-based Recommendation)是建立在对用户使用项目的效用情况上计算的,其核心问题是怎么样为每一个用户去创建一个效用函数,因此,用户资料模型很大 程度上是由系统所采用的效用函数决定的。基于效用推荐的好处是它能把非产品的属性,如提供商的可靠性(Vendor Reliability)和产品的可得性(Product Availability)等考虑到效用计算中

Collaborative_filtering

示例代码

  • 测试数据-用户电影评分MovieLens, MovieLens 是历史最悠久的推荐系统。它由美国 Minnesota 大学计算机科学与工程学院的 GroupLens 项目组创办,是一个非商业性质的、以研究为目的的实验性站点。MovieLens 主要使用 Collaborative Filtering 和 Association Rules 相结合的技术,向用户推荐他们感兴趣的电影

MovieLens https://grouplens.org/datasets/movielens/

完整数据下载
数据样例下载

在成功获取数据,对文件内容进行说明介绍:

  • ratings.csv - 电影评分数据集
    userId,movieId,rating,timestamp 为其数据列:表示每个用户对每部电影在什么时候的评分。

  • movies.csv - 对电影的分类数据集
    movieId,title,genres 为其数据列:表示了每部电影的名字和分类

  • tags.csv - 标签文件
    userId,movieId,tag,timestamp 为其数据列:表示每个用户对电影的分类

  • links.csv -
    movieId,imdbId,tmdbId 为其数据列: 每个电影的 imdb(网路电影资料库),tmdb(电影数据库)的关联编号

from pyspark.sql import SparkSession 
spark=SparkSession.builder.appName('rs'
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值