LeetCode 96:Unique Binary Search Trees

本文探讨了如何根据整数1到n构建不同结构的二叉搜索树,并使用动态规划算法计算所有可能的唯一二叉搜索树的数量。通过递归公式f(i)=f(0)*f(i-1)+...+f(k-1)*f(i-k)+...+f(i-1)*f(0),实现了高效计算。
摘要由CSDN通过智能技术生成

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

Subscribe to see which companies asked this question

//由1,2,3,...,n构建的二叉查找树,以i为根节点,左子树由[1,i-1]构成,其右子树由[i+1,n]构成。
//定义f(i)为以[1,i]能产生的Unique Binary Search Tree的数目
//若数组为空,则只有一种BST,即空树,f(0)=1;
//若数组仅有一个元素1,则只有一种BST,单个节点,f(1)=1;
//若数组有两个元素1,2,则有两种可能,f(2)=f(0)*f(1)+f(1)*f(0);
//若数组有三个元素1,2,3,则有f(3)=f(0)*f(2)+f(1)*f(1)+f(2)*f(0)
//由此可以得到递推公式:f(i)=f(0)*f(i-1)+...+f(k-1)*f(i-k)+...+f(i-1)*f(0)
//利用一维动态规划来求解
class Solution {
public:
	int numTrees(int n) {
		vector<int> f(n+1,0); //n+1个int型元素,每个都初始化为0
		f[0] = 1;
		f[1] = 1;
		for (int i = 2; i <= n; ++i){
			for (int k = 1; k <= i; ++k)
				f[i] = f[i] + f[k - 1] * f[i - k];
		}
		return f[n];
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值