Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
Subscribe to see which companies asked this question
方法一:
1.先在所有行中利用二分查找target所在行;
2.然后target所在行进行二分查找target
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.size() == 0) return false;
if (matrix[0][0] > target) return false;
int r = matrix.size(), c = matrix[0].size(); //r,c分别为矩阵matrix的行数和列数
int low = 0, high = r-1;
//在所有行中利用二分查找target所在的行
while(low <= high)
{
int mid = low + (high-low) / 2;
if (matrix[mid][0] == target)
return true;
else if (matrix[mid][0] < target)
low = mid + 1;
else
high = mid - 1;
}
//在target所在行中利用二分查找target
int low1 = 0, high1 = c - 1;
int k = 0;
while (low1 <= high1)
{
int mid1 = low1 + (high1 - low1)/2;
if (matrix[low-1][mid1] == target) //注意target所在的行是(low-1)
return true;
else if (matrix[low-1][mid1] < target)
low1 = mid1 + 1;
else
high1 = mid1 - 1;
k = mid1;
}
if (matrix[low-1][k] == target)
return true;
else
return false;
}
};
方法二:将矩阵看成数组,利用二分查找,运行时间12ms,时间复杂度O(log(mn)),将m*n的矩阵看成数组,即matrix[x][y]=>a[x*n+y],数组也可以转回m*n矩阵,即a[x]=>matrix[x/n][x%n]
注:此方法为参考leetcode solution中的C++ 12ms方法
//方法二:
//将矩阵看成数组,利用二分查找,运行时间12ms,时间复杂度O(log(mn))
//将m*n的矩阵看成数组,即matrix[x][y]=>a[x*n+y]
//数组也可以转回m*n矩阵,即a[x]=>matrix[x/n][x%n]
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.empty()) return false;
int m = matrix.size(), n = matrix[0].size();
int low = 0, high = m*n - 1;
while (low<=high)
{
int mid = low + (high - low) / 2;
int value = matrix[mid / n][mid%n];
if (value == target)
return true;
else if (value < target)
low = mid + 1;
else
high = mid - 1;
}
return false;
}
};
测试代码:
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.size() == 0) return false;
if (matrix[0][0] > target) return false;
int r = matrix.size(), c = matrix[0].size(); //r,c分别为矩阵matrix的行数和列数
int low = 0, high = r-1;
//在所有行中利用二分查找target所在的行
while(low <= high)
{
int mid = low + (high-low) / 2;
if (matrix[mid][0] == target)
return true;
else if (matrix[mid][0] < target)
low = mid + 1;
else
high = mid - 1;
}
//在target所在行中利用二分查找target
int low1 = 0, high1 = c - 1;
int k = 0;
while (low1 <= high1)
{
int mid1 = low1 + (high1 - low1)/2;
if (matrix[low-1][mid1] == target) //注意target所在的行是(low-1)
return true;
else if (matrix[low-1][mid1] < target)
low1 = mid1 + 1;
else
high1 = mid1 - 1;
k = mid1;
}
if (matrix[low-1][k] == target)
return true;
else
return false;
}
};
int main()
{
Solution s;
vector<vector<int>> nums1 = { { 1, 3, 5, 7 }, { 10, 11, 16, 20 }, {23,30,34,50} };
bool t = s.searchMatrix(nums1, 11);
cout << t <<endl;
system("pause");
return 0;
}