计算机视觉
就三级视觉各领域
Geeksongs
AIGC连续创业者,全栈开发者。不惜一切代价,一切手段推动人类科技进步是我的终极目标。最想实现的是强人工智能,通过脑机接口和基因编辑实现人类永生。
展开
-
【图像分割】:使用全卷积神经网络FCN,进行图像语义分割详解(附代码实现)...
一.导论在图像语义分割领域,困扰了计算机科学家很多年的一个问题则是我们如何才能将我们感兴趣的对象和不感兴趣的对象分别分割开来呢?比如我们有一只小猫的图片,怎样才能够通过计算机自己对图像进行识别达到将小猫和图片当中的背景互相分割开来的效果呢?如下图所示:而在2015年出来的FCN,全卷积神经网络完美地解决了这个问题,将曾经mean IU(识别平均准确度)只有百分之40的成绩提升到了...原创 2020-07-24 17:02:00 · 2595 阅读 · 0 评论 -
【深度学习】:一文入门Dropout层
Dropout层在神经网络层当中是用来干嘛的呢?它是一种可以用于减少神经网络过拟合的结构,那么它具体是怎么实现的呢?假设下图是我们用来训练的原始神经网络:一共有四个输入x_i,一个输出y。Dropout则是在每一个batch的训练当中随机减掉一些神经元,而作为编程者,我们可以设定每一层dropout(将神经元去除的的多少)的概率,在设定之后,就可以得到第一个batch进行训...原创 2020-08-06 16:08:00 · 2169 阅读 · 0 评论 -
【目标检测】:SPP-Net深入理解(从R-CNN到SPP-Net)
一. 导论SPP-Net是何凯明在基于R-CNN的基础上提出来的目标检测模型,使用SPP-Net可以大幅度提升目标检测的速度,检测同样一张图片当中的所有目标,SPP-Net所花费的时间仅仅是RCNN的百分之一,而且检测的准确率甚至会更高。那么SPP-Net是怎么设计的呢?我们要想理解SPP-Net,先来回顾一下RCNN当中的知识吧。下图为SPP-Net的结构:二. RCNNrcn...原创 2020-08-04 22:08:00 · 587 阅读 · 0 评论 -
一文入门人工智能的掌上明珠:生成对抗网络(GAN)
一.简介在人工智能领域内,GAN是目前最为潮流的技术之一,GAN能够让人工智能具备和人类一样的想象能力。只需要给定计算机一定的数据,它就可以自动联想出相似的数据。我们学习和使用GAN的原因如下:1.能够用GAN进行无监督学习:深度学习需要大量数据的标注才能够进行监督学习,而使用GAN则不需要使用大量标注的数据,可以直接生成数据进行无监督学习,比如使用GAN进行图像的语义分割,我们甚至...原创 2020-08-03 16:13:00 · 388 阅读 · 0 评论 -
神经网络绘图工具
http://alexlenail.me/NN-SVG/非常方便的绘图工具,可视化操作,免费,由麻省理工学院开发原创 2020-07-31 10:43:00 · 163 阅读 · 0 评论 -
神经网络剪枝,知识蒸馏,以及模型优化设计
一.神经网络压缩在如今人工智能的浪潮之下,深度学习在不少领域都取得了不错的成果。但是目前在边缘计算,物联网设备上的算力相比于我们的台式计算机还不太充足,我们在计算机上用于拟合的神经网络参数过多,不太适合运行在算力较弱的设备上,比如无人机,手机,平板电脑,自动驾驶汽车等等。因此我们需要将在计算机上训练好的神经网络通过某种技巧将其进行压缩,减少模型的参数,这样训练好的模型就可以迅速在这些边...原创 2020-07-25 14:47:00 · 1324 阅读 · 1 评论