FFT的实验与理解

本文通过实验介绍了如何使用FFT函数分析信号。实验设置了200点的采样频率,确保满足奈奎斯特采样定律。通过对傅立叶系数求模获取幅值,并绘制幅频图,最终验证了实验结果与信号函数的组成一致,揭示了基波及其谐波的频率和幅值。
摘要由CSDN通过智能技术生成

实验
信号的表达式:f = sin(2*pi*5*t)+5*sin(2*pi*10*t)+3*cos(2*pi*22*t)
目的:学会使用fft函数分析信号

实验过程

  1. 设置采样频率、计算信号长度
    设置采样频率为200点,采样区间为[0,1]直接使用采样周期作为步长分割区间,因此得到的信号长度于采样频率相等为200点

    由于信号的最大周期为0.2s,[0,1]区间包含了5个周期,共采200点,即每个周期内采样40点,频率倍数为8倍,能满足奈奎斯特采样定律大于2.56倍的要求

  2. 计算幅频图的参数

    纵坐标为幅值
    fft变换后的y数组中的值其实就是傅立叶系数ak,因此幅值就是|ak|,ak为复数(实数是虚部为0的复数),对复数求模就是复数的实部平方+虚部平方,再开更号,实数的取绝对值运算就是其特例。因此使用abs()函数就能求得幅值~。取值在左右两端对称,因此只要取一半的数据绘图即可

    横坐标为频率
    频率与采集的信号长度有关,由于傅立叶变换在具有对称性,因此只要取一般的信号长度作为横坐标即可

    • 得到信号长度,将其转化为数组k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值