伽罗华域(Galois Field,GF)乘法运算

GF(2m)域

当m=8时,本原多项式为P(x) = x8 + x4 +x3 + x2 + 1

  • 在伽罗华域中,加法等同于对应位异或

  • 现在把α定义为P(x) = 0的根,即α8+α4+α3+α2+1 = 0即可以得到 α8=α4+α3+α2+1

  • 乘法运算
    3*7=(x+1)*(x^2+x+1)=x*x^2+x*x+x+x^2+x+1=x^3+1 (模2运算中x+x=0 and x^2+x^2=0)
    所以3*7=9

  • 在乘积得出来的多项式次数大于7时,我们需要对多项式在GF(2)上关于h(x)求余数,也就是
    129*5=(x^7+1)*(x^2+1)=x^9+x^7+x^2+1
    将上面的函数加上x*h(x)可以消去x^9,(h(x)即为p(x)),所以
    129*5=x^9+x^7+x^2+1+x^9+x^5+x^4+x^3+x=x^7+x^5+x^4+x^3+x^2+x+1=0010111111=191


  • 计算:{57} • {83} = {c1}

    最后一步,先+x^5*p(x),按照异或规则消去x^13,x^9,x^8,x^6,x^5后再+x^3*p(x),消去x^11等,最后得到结果
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值