01背包问题

简单摘抄一下01背包问题以及解决该类问题的基本代码语句

问题简述:

有n件物品,每件物品的重量为w[i],价值为c[i]。现有一个容量为V的背包,问如何选取物品放入背包,使得背包内的物品总价值最大。其中每种物品都只有1种。

令dp[i][v]表示前i件物品(1 <= i <= n, 0 <= v <= V)恰好装入容量为v的背包中所获得的最大价值。

考虑对第i件物品的选择策略,

1.不放第 i 件物品,那么问题转化为前 i-1 件物品恰好装入容量为 v 的背包中所能获得的最大价值,也即dp[i-1][v];

2.放第 i 件物品,那么问题转化为前 i-1 件物品恰好装入容量为 v - w[i] 的背包中所能获得的最大价值,也即dp[i-1][v-w[i]+c[i]]。

实现代码:

for(int i = 1; i<=n; i++){
    for (int v = w[i]; v<=V; v++){
        dp[i][v]=max(dp[i-1][v],dp[i-1][v-w[i]]+c[i]);
    }
}

计算dp[i][v]时总是只需要dp[i-1][v]左侧部分的数据,当计算dp[i+1][]的部分时,dp[i-1][]的数据完全用不到(只需要用到dp[i][]),因此不妨直接开一个一维数组dp[v],枚举方式改变为 i 从1到 n ,v 从 V 到 0(逆序)

由此改变实现代码如下:

for ( int i = 1; i <= n ; i++){
    for (int v = V; v >= w[i] ; v--){
        dp[v] = max ( dp[v], dp[v-w[i]]+c[i]);
    }
}

实际问题:

用n个硬币买价值为m的东西,输出使用方案,使得正好几个硬币加起来价值为m。从小到大排列,输出最小的那个排列方案

1.排列方案从小到大,先将硬币面值从大到小排列

2.bool类型的 choice[i][j] 数组 dp[i][j] 是否选取,如果选取了就令 choice 为 true 

#include <iostream>

#include <cmath>
#include <vector>
#include <algorithm>
#include <map>
using namespace std;
bool choice[10010][110];
int cmp(int a,int b){
	return a>b;
	
}
int main(){
	int n,m;
	
	scanf("%d %d",&n,&m);
	
	int a[n+1];
	for (int i =1;i<=n;i++){
		scanf("%d",&a[i]);
		
	}
	sort(a+1,a+n+1,cmp);
	
	int dp[m];
	for (int v=0;v<=m;v++){
		dp[v]=0;
		
	}
	vector<int > vec;
	
	for (int i=1;i <= n; i++){
		for (int v = m; v >= a[i];v--){
			if (dp[v]<=dp[v-a[i]]+a[i]){
				dp[v]=dp[v-a[i]]+a[i];
				

		        choice[i][v]=true;
			}
		
		}
		
	}
	if (dp[m]!=m){
		printf("No Solutio");
		
	}
	else {
		vector <int > arr;
		int v=m,index = n;
		while (v>0){
			if (choice[index][v]==true){
				arr.push_back(a[index]);
				v=v-a[index];
				 
			}
			index--;
			
		}
		for (int i =0;i<arr.size() ;i++){
			if (i!=0){
				printf(" ");
				
			}
			printf("%d",arr[i]);
			
		}
	}
	return 0;
	
}


 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值