(本文为项目文档)
一、AR图像识别开发
1.单图识别功能搭建
项目初期,基于Unity和Vuforia SDK,搭建了基础的AR单张图片识别功能。通过调整模型的缩放和位置参数,初步完成了模型绑定与显示效果的优化,为后续开发打下了基础。
2.多图识别功能实现
在单图识别的基础上,团队尝试扩展到多张图片的同时识别。通过配置多个ImageTarget并调整识别参数,实现在一个场景中追踪多个图像并分别加载对应模型,初步测试效果良好。
3.当前存在的挑战
·图片识别效果受素材质量影响较大;
·多图识别导致资源消耗上升,系统负载需要进一步优化。
二、人物表情动画处理
1.Blender表情动画优化
借助Faceit插件,将Blender中Rig骨骼动画成功转换为Shapekeys表情动画。这一方式有效提升了人物面部表情的可控性,便于后续在AR场景中实现更自然的角色表现。
2.技术收获
·深化了对骨骼动画与形变动画的理解;
·为高质量3D人物动画在项目应用中奠定了基础。
三、Flutter与Unity融合探索
1.Flutter嵌套Unity模块
利用flutter_unity_widget插件,将Unity场景成功嵌入Flutter应用,初步实现了两端的基础联动,如Flutter按钮操控Unity物体动作。
2.后续需要完善的地方
·当前交互较为初级,仅实现了简单命令传递;
·Unity与Flutter版本兼容问题偶有出现,影响稳定性;
·消息通信机制需进一步打磨,特别是在复杂场景控制中。
四、项目阶段总结与管理反思
1.进度回顾
项目整体进展良好,单图识别、多图追踪、表情动画处理、Flutter集成Unity等核心模块已完成初版开发,技术路线清晰,分工合理。
2.主要问题归纳
·阶段性整合工作不足,功能点之间存在孤立;
·沟通机制尚不完善,资源命名和管理标准缺失;
·跨模块协作部分尚未完全打通,例如Flutter端对AR识别内容的动态控制。
3.改进方向
·引入统一的代码版本管理流程(如Git协作);
·明确接口与数据交互标准;
·周期性组会要更及时同步开发进展与问题。
下一步工作计划
1. 将各自开发的模块进行统一整合,搭建完整系统Demo;
2. 针对AR多图识别的资源占用问题,进行场景优化;
3. 深入完善Flutter到Unity的数据传递与联动控制;
4. 建立正式的协作与资源管理机制,提高整体开发效率;
5. 定期开展功能测试与系统压力测试,确保成品质量。
总结
目前项目已经进入中后期,各关键技术模块基本落地,具备了向成品打磨和优化推进的条件。接下来,重点将放在模块整合、系统优化与整体功能完善上,确保项目能够高质量完成。