Profitability, investment and average returns学术翻译

2. 评估等式的测试:优点和缺点

坎贝尔和希勒(1988)强调,估值方程(1)是一个同义反复,定义了内部收益率,r。鉴于预期股息的股票价格和估计,有一个折现率r,解决了方程(1)。用干净盈余会计,方程(2)相当于方程(1),所以情商。(2)是一个同义反复。方程(3)是通过将方程(2)除以账面权益得到的,所以方程(3)也是一个重言式。

然而,重言式并不意味着式(3)缺乏内容。事实上,同义赘言结论对从式(3)中推断贴现率r的检验具有一定的稳健性。例如,只要期望公司在未来遵循干净盈余会计,过去产生账面权益的会计规则Bt就不会影响对r的推断。假设两家全权益公司具有相同的当前市场价值和相同的预期未来收益和投资。用干净的盈余的会计,我们可以用情商。(2)推断公司必须有相同的预期回报,r。因为我们推导式(3)从情商。(2)两边同时除以当前账面价值,式(3)也意味着它们有相同的r -即使这两家公司的资产进行价值在不同的书。它们在式(3)中有不同的Bt抵消,不影响贴现率r。重要的含义是,如果期望企业使用清洁盈余会计,那么我们的横截面测试来估计预期收益如何随Bt/Mt、预期盈利能力和预期投资的变化是有效的,只要测试控制了所有三个变量。这是为了强调三个变量联合控制的重要性,这在早期的工作中通常是缺失的。

偏离清洁盈余会计是一个潜在的问题。但这是有原因的期望实际的偏差不是致命的。第一,从方程(1)到方程(2)的转变,只在预期中需要干净的剩余。只要未来偏差的期望值为零,企业就可以偏离净盈余。第二,方程(2)背后的直觉是,如果两家公司的股价相同,账面权益的预期增长率相同,但其中一家公司的预期收益更高,那么它的预期股票回报(权益资本成本)必然更高。同样,如果两家公司的股价和预期收益相同,但其中一家公司需要更多的预期股权投资来产生收益,那么该公司的预期股票收益必然较低。我们认为会计问题一定很严重,才能掩盖这些预测的所有痕迹。但有证据表明情况并非如此。因此,尽管会计的变化莫测,现有文献确定了与Bt/Mt相关的平均股票回报、预期盈利能力和预期投资的差异,甚至没有同时控制这三者。

现在也许是最重要的一点。即使有干净的盈余会计,测试式(3)面临一个老生常谈的问题:我们无法判断平均股票收益中的账面市值比、盈利能力和投资效应是由于合理的定价还是不合理的定价。要理解这一点,请首先注意式(1) 到式 (3) 认为(它们是重言式)盈利和投资的期望值是合理的还是不合理的。隐含的贴现率r确实会随着预期的不同而变化。当期望值是合理的,r是贴现率(大致是真实的期望值)股票回报)由理性信念所暗示的。当期望值是无理数时,r是这些非理性信念所暗示的预期回报(而且它不是真正的预期回报)。

接下来考虑我们测量的是什么。我们对预期盈利能力和投资的估计(例如,从对滞后预测者的未来盈利能力和投资的回归)是合理的(实际的或真实的)条件期望值的估计。我们的返回测试提供合理评估(实际或真实)预期收益的估计(代理观察到的平均回报)随着账面市值比率和预期盈利能力和投资的理性评估而变化。如果隐含在股票定价中的预期盈利能力和投资的估计也是合理的,那么,在抽样误差以内,我们测量的预期收益的变化与投资者的预测相一致。

然而,假设股票价格是基于非理性的盈利能力和投资。因此,账面市值比Bt/Mt包含了一个不合理的价格。式(3)仍然意味着,只要我们使用预期盈利能力和增长的理性评估,我们的测试提供了对真实的预期回报如何与预期盈利能力和投资的理性评估以及包含不合理价格的账面市值比变化的估计。换句话说,无论Bt/Mt的价格是否基于这些理性评估,我们衡量的真实预期回报与预期盈利能力和增长的理性评估是相同的。对预期盈利能力和投资的非理性信念通过对Bt/Mt价格Mt的影响影响我们对真实预期回报的估计。在这里,我们面临着常见的难题:在理性风险和非理性信念之间的差异(在我们看来),关于Bt/Mt公司之间差异(3)的明确声明是如何不可能的。简而言之,尽管文献中的常见说法相反,测试方程(3)本身不能告诉我们是否盈利能力和投资的投资者预测,确定太理性或非理性的。我们在整篇文章中重新讨论了这个问题。

  1. 预期盈利能力及投资

预测盈利能力和资产增长的多重回归,提供了我们预期盈利能力和投资的代理,如表2所示。表1是背景。它总结了初步回归,表明单独使用或在小的自然子组中使用,表2的多重回归中的所有变量预测盈利能力或资产增长,通常两者都预测。我们的讨论主要集中在关于边际解释力的证据,从表2的多重回归。表2中有两组回归。第一种方法仅利用滞后规模和会计基本面来预测盈利能力和增长。第二组增加了滞后回报、分析师盈利预测,以及企业实力的两个一般衡量指标PTt和OHt,作为解释变量。

3.1资产增长

考虑表2的回归来预测资产增长。在第一组中,所有的会计基础都以合理的方式与未来的资产增长相关。规模较小的公司和利润更高的公司往往增长更快,但支付更多股息的公司增长更慢。账面市值比较高的公司(所谓的价值公司)的增长速度低于低Bt/Mt公司(成长型公司)。在应计收益为正值的公司中(报告的收益超过了来自经营的现金收益),较大的应计收益与较慢的未来资产增长有关。当应计项目为负时,应计项目与增长之间的关系是不可辨别的。在t统计量方面,Bt/Mt和Dt/Bt的解释能力最强,平均斜率从0到12个标准差以上。滞后的资产增长也有助于预测未来的增长,但从经济角度来看,影响很小。在不显示细节的情况下,我们可以报告说,在表2的多元回归中增加更多的增长滞后,或者用三年平均值代替第一个增长滞后,并不能提供更有力的证据,证明滞后资产增长在预测未来增长方面的重要性。这与表1中的单变量回归相反,表1中的滞后增长显示出强大的力量来预测未来三年的资产增长。

将滞后回报、I/B/E/S盈利能力预测、PTt和OHt添加到资产增长回归中,往往会降低其他斜率的规模和精度,但这些斜率仍然具有解释力,只有两个例外。平均坡度仍然是负的,但对于未来一年和两年的预测,它们现在比零差不到两个标准误差。更有趣的是,滞后资产增长失去了预测未来增长的能力,这对以后解释回报率回归有一定的意义。滞后回报和OHt在完全回归中具有边际预测能力,而I/B/E/S盈利能力预测可能具有解释力,至少对未来一年的预测具有解释力。不足为奇的是,过去回报和预期盈利能力较高的公司倾向于投资更多,而违约可能性较高的公司增长速度较慢。单独使用时,企业实力的Piotroski测度与未来资产增长之间存在很强的正相关关系(表1),但在全部回归中,PTt没有可靠的预测能力。

3.2盈利能力

当使用规模和会计基础来预测盈利能力,Yt+t/Bt, 1年,2年和3年(1年,2年,3年),滞后盈利能力是迄今为止最强大的预测能力。例如,未来一年的预期利率Yt/Bt的平均斜率为0.78,是从零到35.16的标准误差。因此,盈利能力具有相当大的持久性。但盈利能力是均值回归;滞后盈利能力的一年斜率大约是在1.0以下的10个标准误差,未来三年的预测斜率衰减到0.70。在不展示细节的情况下,我们可以报告说,增加更多的盈利能力滞后,或者用三年平均水平代替第一个滞后,并不能比单独的盈利能力第一滞后更有力地证明滞后盈利能力在预测未来盈利能力方面的重要性。

正如预期的那样,账面市值比有助于预测盈利能力;具有较高Bt/Mt(价值公司)的公司往往利润较低。在表1的回归分析中清楚地显示了股息与账面权益比率的预测能力,但当与表2中的其他基本面因素竞争时,它在很大程度上就消失了。但表2的多重回归提供了更有力的证据,表明不支付股息的公司利润更低。

滞后的资产增长与未来盈利能力之间的联系值得讨论。在单变量回归(表1)中,滞后增长与未来盈利能力呈正相关,但在表2的多变量回归中,斜率为负。因此,通过对规模和其他基本面因素(尤其是过去的盈利能力)的控制,较高的资产增长与较低的未来盈利能力和盈利增长相关联。(我们稍后再回到这一发现。)

滞后的回报时,I / B / E / S收益预期,公司实力和Piotroski Ohlson措施(PTt和OHt)被添加到盈利能力回归,没有多少的平均斜率发生了Bt /太,正面和负面的比率收益账面价值,股息比账面价值。但滞后盈利能力的斜率较小,滞后资产增长的斜率往往更可靠地为负。当两个滞后回报单独用于预测盈利能力时,它们的平均斜率为强正(表1),但与其他变量(表2)竞争,滞后回报的斜率下降,只有第一个滞后回报(年t-1)显示可靠的预测能力。当单独用于预测盈利能力时,OHt产生强大的负平均斜率;较高的违约概率(这并不奇怪)与较低的未来盈利能力相关。但在多元回归分析中,ohht失去了大部分解释力,至少对一年多前的预测是如此。相比之下,尽管当盈利能力回归中包含其他变量时,企业实力的PTt测量的正平均斜率更小,但它们仍然保持高于从零到2.3的标准误差。

单独用于预测盈利能力(表1),滞后盈利能力和分析师盈利预测的平均斜率接近1.0。因此,滞后盈利能力或分析师预测的差异大致反映了未来盈利能力的一个接一个。但在使用全部变量来预测盈利能力的多重回归(表2)中,滞后盈利能力和分析师预测的斜率通常下降到表1中观察值的一半以下,斜率的总和现在小于1.0。这两个变量的平均斜率都大于5个标准误差。因此,在多元回归中,两个变量(相关系数为0.35)分割了它们共享的关于未来盈利能力的信息。此外,在完整的回归分析中,许多变量有助于预测盈利能力。这一结果证实了早先的证据,即分析师在预测收益时忽略了信息。(例如,阿里、克莱因和罗森菲尔德,1992年;Abarbanell和Bernard, 1992;伊斯特伍德和纳特,1999;Ahmed, Nainar和Zhang, 2003年。)

由斯隆(1996)提出的大量文献表明,应计项目导致收益的短暂变化。盈利能力回归中应计项目的负斜率证实了这一结果。然而,请注意,在表2的1年和2年盈利能力回归中,+ACt/Bt的平均斜率比-ACt/Bt的更负,但在较长期的范围内,+ACt/Bt的斜率趋于不那么负,ACt/Bt的系数变得更负。因此,在三年的回归分析中,正负应计收益的斜率大致相等,约为0.06。他们的行为斜坡研究表明,报告的收益中正应计项目的反转发生得更快,但正应计项目和负应计项目对收益具有类似的长期暂时性影响。

然而,应计利润并不意味着比收益中的现金部分恢复得快得多。在表2中,仅使用规模和滞后会计基础来预测盈利能力的回归分析中,滞后盈利能力和应计项目获得了盈利能力的平均回归(包括现金收益和应计项目),而应计项目衡量的边际平均回归高于滞后盈利能力。(回归分析中的其他解释变量很大程度上只考虑了公司间长期平均盈利能力的差异。)应计利润的点估算值在3年期限内约为- 6%,表明与应计利润相关的长期边际平均收益率是很小的。

斯隆(1996)的假设是,投资者不理解收益中应计部分的平均回归速度更快,这一假设在有关股票回报和应计部分的文献中几乎一致采用。这导致当期应计利润与未来股票收益之间的负相关关系,当应计利润的均值回归达到可测收益时观察到。但应计项目并不意味着比现金部分的收益恢复得快得多,这一事实表明,斯隆的故事本身无法解释与应计项目相关的平均回报的巨大息差。我们对应计利润的边际均值回归的估计与斯隆(1996)等人的估计相似。

表2中包含所有解释变量的盈利能力回归产生的R2与仅使用规模和会计基础来预测盈利能力的回归产生的R2相同或略低。因此,尽管滞后回报、PTt和分析师预测在盈利能力回归中具有边际解释力,但它是以牺牲其他变量为代价的,主要是滞后盈利能力。滞后回报、PTt和分析师预测不会增加由规模和会计基本面提供的盈利能力预测的整体力量。在不显示细节的情况下,我们还可以报告滞后盈利能力单独产生的盈利能力预测几乎与表2中扩展回归的预测一样强大(根据R2)。当我们接下来发现,一小组解释变量(包括滞后盈利能力)似乎为预期盈利能力提供了一个简单的代理时,这些评论可能是恰当的,它比表2中盈利能力回归的拟合值更能预测股票回报。

4. 预期收益:截面回归

我们分三步测试估值方程(3)预测的预期收益中的盈利能力和投资效应。我们首先展示了截面回归,解释了平均股票回报与滞后价值的大小,Bt/Mt,资产增长,盈利能力,应计利润,以及企业实力的PTt和OHt的测量。其目的是检验预期盈利能力和资产增长的简单代理是否有助于解释由规模和Bt/Mt提供的平均回报。然后,我们使用更复杂的预期盈利能力和资产增长代理——表2回归的拟合值,以测试平均回报中的盈利能力和投资效应。最后的测试使用投资组合来检验在截面回归中确定的盈利能力和投资效应在整个样本中以及在规模和Bt/Mt形成的投资组合中是否大且普遍。

从1963年7月开始,我们每月估计截面回报回归,并在6月底每年更新解释变量。为了确保解释变量在从属收益的月初就已经知道,回归分析中的会计变量是在第一次使用这些变量时的7月之前的历年结束的会计年度。因此,我们使用t年1月至12月之间的财政年度末的数据来预测从7月的t+1到6月的t+2的月度收益。Fama和法国(1992年),市场股本规模变量测量6月底t + 1,和市场股票的账面值对市值比率是t的12月底。减少异常值的影响,我们winsorize返回回归中的独立变量在0.5%的水平。因此,对于第t年,极值缩小到0.5和99.5%。(如表1和表2所示,我们只考虑单侧变量的上界或下界。)

4.1基线测试

表3证实了之前的证据,当单独使用规模和账面市值比来解释收益时,平均收益和Bt/Mt之间存在很强的正相关关系。平均Bt/Mt斜率的t统计量从零到接近三个标准误差。因此,高账面市值比(价值)的公司比低账面市值比(成长型)的公司有更高的平均回报。在之前的工作中,小公司(低市值)比大公司有更高的平均回报,但负的平均规模斜率从零只有1.20个标准误差。

更有趣的是,预期盈利能力和资产增长的简单代理似乎证实了估值方程(3)所预测的平均回报的正盈利能力和负增长效应。当滞后盈利能力和资产增长被添加到包括规模和Bt/Mt的回报回归时,盈利能力与平均回报之间存在很强的正相关关系(t¼:55),而平均回报与资产增长之间存在较强的负相关关系(t¼:3.87)。此外,在回归回归中加入滞后盈利能力和资产增长对Bt/Mt的平均坡度几乎没有影响,但增加了平均坡度的大小,现在从零到1.83的标准误差。我们还可以报告说,增加盈利和增长的滞后或用过去三年的平均价值取代最初的滞后,并不能产生可靠的解释力改善。

由于应计利润与未来盈利能力负相关(表2),估值方程(3)预测应计利润与未来收益之间为负相关。在表3的回归回归中,正应计利润+ACt/Bt的平均斜率可靠地为负(t¼6.82)。这与早期的证据一致(斯隆,1996;Collins和Hribar, 2000;Chan, Chan, Jegadeesh,和Lakonishok, 2006)指出应计利润预测收益。负应计收益(ACt/Bt)的平均斜率也是负的,但小于从零到零的一个标准误差。因此,在控制其他变量的情况下,负应计利润并不能可靠地预测更高的未来收益。这个结果在文献中似乎没有先例。

正应计项目中有关未来收益的一些信息与滞后增长的信息有关。+ACt/Bt和dAt/At之间的平均相关性为0.29,将应计利润添加到回报回归中,将资产增长的平均斜率减半,从0.40 (t¼3.87)降至0.19 (t¼1.99)。这与之前的证据一致,即应计项目可能在一定程度上提高了平均回报的增长效应(Fairfield, Whisenant, and Yohn, 2003)。然而,另一种解释是,资产增长预测回报,因为它有助于预测盈利能力,而应计项目吸收了资产增长中的一些盈利能力信息。这与证据(表2)一致,在控制其他变量(主要是滞后盈利能力)的情况下,滞后资产增长和未来盈利能力之间的边际关系为负。相反,将应计利润添加到回报回归中,会增加滞后盈利能力的斜率,从1.10 (2.55 t¼- 1.38 t¼- 3.21)。这与之前的证据一致,即增加应计项目有助于清理滞后盈利能力中关于未来盈利能力的信息(Sloan, 1996)。然而,重要的一点是,所有这些关于Bt/Mt、盈利能力、增长和应计收益预测的结果都与估值方程(3)一致。

同样,企业实力的PTt和OHt指标是预期净现金流的代理。因此,估值方程(3)表明,它们是识别因规模和Bt/Mt而错过的平均回报变化的候选对象。证实了Piotroski(2000)和Griffin和Lemmon(2002),表3显示,当将PTt和OHt加入包括规模和Bt/Mt在内的回归回归时,它们具有解释力(平均斜率从零到2.2个标准误差)。控制规模和Bt/Mt,较强的公司(PTt越高)平均回报越高,而违约概率(OHt)越高的公司平均回报越低。

添加滞后的盈利能力、资产增长和收益回报回归抑制了PTt的平均斜率和OHt,从0.06到0.04 (2.55 t¼)对PTt和从0.04到0.03 (OHt t¼1.55)(表3)。共线性的人数,但每一个变量(滞后的盈利能力、成长、收益、PTt、和OHt)似乎捕捉到了其他公司忽略的平均回报信息。(不用显示细节,我们可以报告,添加两个股利变量No Dt和Dt/Bt,以及I/B/E/S收益预测变量It/Bt,并没有增强回报回归的解释力。)

最后,先前的文献通常将观察到的收益与滞后盈利能力、投资、应计利润、PTt和OHt之间的关系解释为错误定价的证据。但正如在第2节中强调的,盈利能力、投资和净现金流在平均回报中所捕捉到的这些变量与估值方程(3)一致,无论定价是否合理。式(3)的检验本身并不能区分合理和不合理的定价。

4.2 “更好”代表预期的盈利能力和投资

估值方程(3)表明,盈利能力、资产增长、应计利润、PTt和OHt预测收益,因为它们具有预期盈利能力和资产增长的信息。如果是这样,那么从表2中第一阶段盈利能力和增长回归的拟合值似乎是合理的,它聚合了这些和其他变量中关于预期盈利能力和增长的信息,至少也应该预测收益。表3 Panel B中使用拟合值的月收益回归分析不支持这一结论。

当滞后的会计基本要素(包括盈利能力、资产增长和应计利润)与规模和Bt/Mt一起用于构建预期盈利能力和增长的代理时,预期盈利能力和平均回报之间存在可靠的正关系。在使用预期盈利能力和预期增长的回归回归中,预期盈利能力的平均斜率的t统计量为2.03,而在使用预测未来两年和三年的回归中,预期盈利能力的平均斜率的t统计量大于2.3。然而,与估值方程(3)的预测相反,表3的回报回归对表2的预期资产增长回归代理产生正的平均斜率,但它们并不可靠地不同于零。

表2表明,滞后回报、分析师盈利预测、PTt和OHt对第一阶段盈利能力和资产增长回归具有解释力,这些回归也控制了规模、Bt/Mt和滞后会计基本面。但表3表明,这些完整的第一阶段盈利能力和增长回归的拟合值对平均回报中盈利能力效应的证据较弱(最大t统计量为1.64),仍然没有证据表明资产增长效应。

4.3讨论

为什么由滞后盈利能力、资产增长、应计利润、PTt和OHt提供的预期盈利能力和投资的简单代理,比从第一阶段盈利能力和资产增长回归中总结了这些和其他变量中的信息的更复杂的代理,能够更好地描述平均回报?我们提供了一些可能性。

在第二阶段回归分析中,我们使用第一阶段盈利能力和资产增长回归的方法存在两个潜在的测量误差问题。首先,虽然盈利能力和资产增长回归确定了许多具有预测能力的变量,但平均斜率具有测量误差,因此当使用回归拟合值作为回报的解释变量时,存在测量误差问题。其次,第二阶段回归回归中使用的第一阶段回归的拟合值是用逐年第一阶段回归的全期间平均斜率来计算的。隐含的假设是第一阶段的斜率是恒定的。如果坡度不是恒定的,整个时期的平均坡度会对预期盈利能力和增长产生噪声。

为了探索真实的第一阶段斜率的变化是否影响我们的结果,我们使用滚动第一阶段盈利能力和增长回归的拟合值来估计第二阶段回报回归。具体来说,我们用近十年来第一阶段回归的平均斜率来估计每一年的拟合值。如果真实的第一阶段的斜坡是恒定的,那么从滚动的十年斜坡构造的拟合值在第二阶段回归回归中不应该像使用全期平均斜坡的拟合值那样工作。但在不显示细节的情况下,我们可以报告说,基于滚动10年平均坡度的盈利能力和增长预测与使用第一阶段回归的全期平均坡度的预测大致相同(不优于也不差于)。这表明真实斜率有足够的变化来抵消10年平均首次回归斜率较大的估计误差。

更积极的是,我们建议将滞后规模、Bt/Mt、盈利能力、资产增长、应计利润、PTt和OHt直接作为回报回归中的解释变量,为这些测量误差问题提供了一个灵活的解决方案。具体地说,将预期盈利能力和资产增长的解释变量不加限制地输入月度收益回归分析中,就含蓄地允许它们选取当前与预测盈利能力和增长相关的第一阶段斜率。

第二阶段收益率回归中盈利能力和资产增长回归拟合值的失败,部分原因可能是共线性。我们在盈利能力和增长回归中使用相同的解释变量。许多变量以相似的方式影响两个拟合值。在两组回归中,Bt/Mt、Neg Yt、+ACt/Bt和No Dt的系数均为负(表2),而Yt/Bt的系数均为正。因此,第一阶段回归的拟合值高度相关。例如,综合首次通过盈利能力和增长回归分析得出的未来一年拟合值之间的平均年度相关性为0.76。

第一阶段盈利能力和资产增长回归的拟合值也与第二阶段收益回归中的规模和Bt/Mt变量相关。在第一阶段增长回归中,账面市值比是一个强有力的解释变量;预期增长估计值与Bt/Mt之间的相关性通常约为0.8。由于Bt/Mt在第二阶段回归中也是一个解释变量,这种共线性可能会掩盖平均收益中的增长效应。

在第一阶段盈利能力回归中,规模和Bt/Mt都有较强的坡度,因此,它们与回归拟合值相关。预计盈利能力估计值与规模的相关性约为0.4,与Bt/Mt的相关性约为0.7。这些联系不像Bt/Mt和预期资产增长之间的联系那么紧密,但它们确实使得在第二阶段回归分析中更难确定预期盈利能力和预期回报之间的边际关系。

值得注意的是,估值方程(3)并不意味着预期收益一定存在与规模和Bt/Mt无关的变化。假设预期收益的差异完全可以用规模和Bt/Mt来解释。那么,预期净现金流的最佳可能预测必须与规模和Bt/Mt的线性组合完美相关,因此,在预期收益中没有无法解释规模和Bt/Mt的盈利能力和投资效应。由于来自资产增长回归的预期增长代理与Bt/Mt高度相关,这个故事可以解释为什么代理不能识别平均回报中的增长效应。截面盈利能力回归的预期盈利能力代理与Bt/Mt相关性较小,这可能解释了为什么它们在回报测试中表现得更强。

最后,滞后的资产增长可能在回归分析中呈现负平均斜率,这是因为资产增长中包含了关于未来盈利能力的信息,而不是预期增长的信息。在表2的多元回归中,滞后资产增长对于预测未来增长并不重要。此外,在预测盈利能力的回归分析中(应计利润尤其是滞后盈利能力发挥着重要作用),较高的增长与较低的未来盈利能力相关。这与增长较快的公司预期收益较低是一致的,特别是当回报回归控制滞后的盈利能力和应计利润时。

5. 预期收益:投资组合测试

横截面回报回归可以识别帮助描述平均股票回报的变量,但平均斜率的经济意义并不总是容易判断。此外,回归回归的平均斜率不能告诉我们回归是否明确。例如,回归分析确定的盈利能力和资产增长效应在不同规模和账面市值比的股票中是否以一般方式表现出来?本节使用组合测试来解决这些问题。

5.1经济意义

表4显示了利用表3的横截面收益回归的预测值形成的投资组合的预测收益和实际收益。月收益回归的解释变量每年在6月底变化一次。因此,在每年6月底,我们通过将表3的回归回归中解释变量的现值与整个样本期的平均月回归斜率相结合,计算下一年度单个股票的预测月收益。(因为我们的目标是发展对回归回归结果的视角,所以我们使用全周期平均回归斜率所暗示的前瞻性偏差不是问题。)然后,我们根据他们对下一年月度收益的预期是高于还是低于当年样本中值,将股票分配到高预期收益和低预期收益组合中。对于表3中的每一个回归,表4给出了预测高、低收益之间的平均差值和实际收益之间的平均差值。我们同时报告了等量(EW)回报和价值加权(VW)回报,前者给予样本中许多小公司较大的权重,后者给予大公司较大的权重。

表2的第一阶段盈利能力和资产增长回归检验了1年、2年和3年的预测水平。表3使用三组独立回归分析中的这些预测来解释平均回报的横截面。我们还估计表4中的高-低收益差使用表3回归为每个预测视野。不同预测水平的结果基本一致。为了节省空间,表4仅显示了基于表3收益回归的预测和实际收益差,该表3使用盈利能力和增长预测一年前。

对于等权重回报和价值权重回报,预测的平均利差相当相似。这表明,在潜在的回归解释变量中,各股票的变化大致类似于小公司和大公司。当我们等量加权收益时,每一次回归的平均实际收益差都要高于预期收益差,但如果采用价值加权,实际收益差要低于预期收益差。我们推断,表3回归测量的平均回报效应在较小的公司中更强。不过,实际回报的平均利差的排序由表4中连续的回归是相同的大盘和value-weight回报,所以我们还推断(和表5确认),虽然大小不一,平均回报效果观察表3的回归是常见的小型和大型企业。

表4证实了现有证据,即规模和账面市值股本的差异与平均回报的大利差有关。仅使用规模和Bt/Mt来解释回报的横截面回归预测的高-低回报的平均息差为每月0.42% (EW)和0.49% (VW);平均实际利差为0.52% (EW)和0.43% (VW),从零到4.66和3.42的标准误差。我们从表3和以前的工作中知道,这些差价的大部分是由于Bt/Mt确定的价值溢价。

表3中的回归表明,当将滞后盈利能力、资产增长和应计收益添加到包括规模和Bt/Mt作为解释变量的回归时,在统计上具有可靠的预测收益的能力。但表4表明,这些变量产生的平均回报增量是适中的。在表3的回归回归中添加滞后盈利能力和资产增长(回归2),将表4的预测息差每月增加0.09% (EW)和0.03% (VW);平均实际收益率差的增量分别为0.06% (EW)和0.05% (VW)。加上正的和负的应计收益,平均预期收益率差每月仅增加0.03% (EW)和0.02% (VW);平均实际收益率差的增幅分别为0.09% (EW)和0.02% (VW)。

如果我们仅使用PTt和OHt与规模和Bt/Mt来预测收益(表4中的回归4),平均预测和实际收益差低于滞后盈利能力、资产增长和规模和Bt/Mt的应计收益产生的差。表4中完整的回归5使用滞后规模、Bt/Mt、盈利能力、增长、应计利润、PTt和OHt来预测收益,产生的平均预测和实际收益差接近于那些没有PTt和OHt的结果。简而言之,Piotroski(2000)和Ohlson(1980)对企业实力的衡量,汇总了许多会计变量中的信息,除了滞后盈利能力、增长和应计利润的信息之外,似乎没有关于预期回报的重要经济信息,而这些信息又似乎是适度的。

在表3的回归分析中,表2中解释盈利能力和资产增长的回归分析拟合值并没有表现出一致的边际解释力。我们推测其中一个问题可能是共线性:盈利能力和增长回归的拟合值彼此之间以及与Bt/Mt高度相关。然而,在表4的收益预测中,我们感兴趣的是,盈利能力和增长的拟合值是否包含规模和Bt/Mt以外的平均收益信息。在本研究中,拟合值与Bt/Mt的高相关性仍然是一个问题,但两个拟合值之间的共线性本身不是问题。因此,我们有理由希望,从盈利能力和增长回归中拟合的价值能够识别平均预测和实际回报的重大变化。

希望并没有实现。表4表明,在表3的回归回归中,以规模和Bt/Mt作为解释变量,表2中以规模、Bt/Mt、以及预测盈利能力和资产增长的会计基础,在预测和实际回报方面产生的平均利差,大约与仅按规模和Bt/Mt产生的利差一样大。因此,在经济方面,这些盈利能力和投资的预测与规模和Bt/Mt提供的回报预测几乎没有关系。此外,使用整套明显重要的解释变量的盈利能力和资产增长回归比仅使用规模和Bt/Mt作为解释变量的基线收益回归产生更低的平均预测和实际收益差。因此,这些拟合值在一定程度上模糊了由大小和Bt/Mt提供的收益预测。

5.2。普遍性和回归规范

表4给出了在表3的回归回归中发现的平均收益变化的经济意义的总体情况。最后一项任务是检验回归分析是否在某种意义上是明确的,即它们的预测显示在不同规模和账面市值比的股票的平均回报中。

规模-Bt/Mt组是用于构建Fama和French(1993)三因素模型的SMB(小减大市值)和HML(高减低Bt/Mt)回报的投资组合。从1963年开始,每年6月,纽交所、美国运通和纳斯达克的公司根据其市值是否低于或高于纽交所的中值,被分配到两个规模集团,小(S)和大(B)。这些公司还被分配到三个账面市值比集团,这取决于它们的Bt/Mt在纽交所的Bt/Mt中处于底部30% (L)、中间40% (M)或顶部30% (H)。将大小和Bt/Mt分类进行交叉,产生6种投资组合,SL、SM、SH、BL、BM和BH。

在每年6月底,我们将6个Bt /Mt类型的股票分配到高预期和低预期回报组合中,根据他们对下一年的预期月回报(拟合值)是高于还是低于他们组的中值。然后,我们计算未来12个月高、低组合的预期和实际回报。对于表3中的每一个回归,以及6个规模- Bt /Mt组中的每一个,表5显示了等权重预测高收益和低收益之间的平均差异,以及等权重实际高收益和低收益之间的平均差异。(为了节省空间而略去的价值-权重回报支持同样的结论。)比较6个规模- Bt /Mt组的平均实际收益差值与预测差值,可以看出哪些组提供回归预测的平均收益变化。这反过来又提供了回归是否在不同规模的Bt /Mt组中得到很好指定的信息。表5显示了表3中所有回归回归的平均预测和实际收益差,但下面的讨论集中在表4中产生增量收益差的回归(滞后规模、Bt/Mt、盈利能力、资产增长和作为解释变量的应计项目)。

基线同样是仅以规模和Bt/Mt作为解释变量的回归分析。在6个规模-Bt/Mt组中,每个组在规模和Bt/Mt上都有差异,在预测的高-低回报中产生相当大的平均息差(从每月0.11到0.25%)。回报率的平均实际息差相当好地再现了预期息差,但有一个明显的例外。小型增长组SL的平均收益率差为0.33% /月(t¼3.41),比组内规模和Bt/Mt变化预测的收益率差(0.19%)高出近75%。

将滞后盈利能力和增长添加到回报回归中,其中也包括规模和Bt/Mt作为解释变量,增加了所有6个规模-Bt/Mt组的平均预测和实际回报差,因此这些变量和平均回报之间的关系是一般的。我们推断,预测收益与规模、Bt/Mt、盈利能力和增长的回归是明确的;他们确定了在所有规模Bt /Mt组中出现的平均回报模式。然而,在表4的总体收益结果中,通过在收益回归中增加盈利能力和资产增长而获得的平均预测和实际收益差的增量通常是适度的,除了小增长型组,他们的预期平均收益差每月上升0.25%(是其他任何组的两倍多),实际上升0.27%。我们推断小成长型股票在盈利能力和资产增长方面存在较大差异,并且在平均回报上与预期一致。

在包括滞后规模、Bt/Mt、盈利能力和资产增长作为解释变量的回报回归中添加滞后应计利润(回归3),将6个规模Bt/Mt组的平均预期高-低回报息差每月增加0.03%至0.11%。除BH(大价值股票)外,所有类别的实际收益的平均息差都在增加。增长是温和的,除了(再次)小增长型群体,在回报率回归中加入应计利润,会导致平均高-低回报率息差从已经令人印象深刻的每月0.60% (4.50 t)上升至0.86% (6.57 t)。这是预期增幅(从0.44%增至0.48%)的6倍多。简而言之,在收益回归的解释变量中加入应计项目,除SL外,所有组的平均高-低收益都有小幅增加。我们推断,在表3的收益回归中,小型成长型股票对正应计项目的强平均斜率有影响。

我们与应计项目相关的适度增量回报与斯隆(1996)和其他人发现的每年约10%的回报形成了对比,他们的策略是购买低应计项目公司的股票和做空高应计项目公司的股票。为什么我们的结果不同?首先,早期的回报测试并没有同时控制规模、Bt/Mt、盈利能力和增长,以隔离应计利润的边际解释能力。其次,研究的投资组合策略通常是极端的,买入和做空应计利润底部和顶部十分位数的等权重投资组合。相比之下,我们比较了六个规模B /M投资组合中预期收益的上半部和下半部。我们的结果表明,小成长型股票可能对极端策略观察到的大等权重回报有影响。Fama和French(1993)发现小型成长型股票在他们的三因素资产定价模型中存在问题,Mitchell和Stafford(2000)发现小型成长型股票在许多引人注目的事件研究异常中具有影响力。这里提出的证据表明,小成长型股票对应计利润异常也有影响。

6. 结论

估值方程(3)表明,控制预期盈利能力和投资,账面市值比较高的公司有更高的预期股票回报;考虑Bt/Mt和预期投资,较高的预期盈利能力也意味着较高的预期回报;考虑到Bt/Mt和预期盈利能力,较高的预期投资率与较低的预期回报相关。

我们的证据倾向于证实这些预测。具体来说,我们的横截面回归表明,滞后盈利能力、资产增长和应计利润,作为预期盈利能力和投资的简单代理,以式(3)预测的方式与平均回报相关。Piotroski(2000)和Ohlson(1980)衡量企业实力,这是预期净现金流(收益减去投资)的代理,也与式(3)预测的平均回报相关。

一个难题出现了,当从截面回归预测盈利能力和资产增长的拟合值作为代理预期盈利能力和投资在截面回报回归。许多变量有助于盈利能力和资产增长的回归预测。因此,除了滞后的盈利能力和资产增长之外,还有关于预期盈利能力和资产增长的信息。更好的预期盈利能力和投资代理应该能更好地识别式(3)预测的平均回报中的盈利能力和投资效应。但这并不是我们所观察到的。我们认为,问题在于第一阶段盈利能力和资产增长回归的拟合值存在测量误差,而第二阶段收益回归的拟合值与账面市值变量之间存在共线性。我们认为,通过将第一级盈利能力和资产增长回归(滞后盈利能力、增长、应计收益、企业实力的PTt和OHt计量指标)中的重要解释变量直接作为第二阶段收益回归的解释变量,测量误差问题就得到了隐式解决。

从定性上讲,我们的结果与许多现有证据一致。不足为奇的是,账面市值比股票是描述平均股票回报横截面的一个强大变量(例如,Fama和French, 1992)。现有证据还表明,盈利越高的公司预期回报越高(例如Haugen and Baker, 1996),而投资越多的公司平均回报越低(例如Fairfield, Whisenant, and Yohn, 2003)。斯隆(1996)和随后的许多论文表明,较高的当期应计利润意味着较低的未来盈利能力和较低的未来股票回报。Piotroski(2000)和Griffin和Lemmon(2002)发现PTt和OHt代表的预期净现金流与平均股票回报相关。至少,我们的证据框架强调,所有这些结果都符合估值理论,如式(3)所总结。

然而,我们的证据提供的不仅仅是对现有结果的看法。以前的工作通常一次检查一个变量的返回效果。相反,我们研究滞后Bt/Mt、盈利能力、资产增长、应计利润、PTt和OHt等预期净现金流代理对检验增量效应的测试中平均回报的描述有何贡献。具体地说,我们根据截面回报回归的拟合值,分别将股票配置到高和低预期回报组合中,并依次加入我们和其他人认为重要的变量,来检验实现平均回报的差值。实现平均回报的利差很大,但在规模的帮助下,最大的份额被账面市值比吸收了。通过截面回归(使用规模和Bt/Mt来解释回报率)得出的高-低投资组合平均回报率为每年5% - 6%。在回归分析中加入滞后的盈利能力和增长,平均收益差每年增加不到1%。当我们把应计利润加到这些回归分析中,每年的增量回报又低于1%,而这其中的大部分似乎来自于小型增长型股票。最后,将PTt和OHt添加到包括滞后规模、Bt/Mt、盈利能力、资产增长和应计收益等解释变量的回归中,对高-低平均回报没有任何帮助。

我们始终强调,有一个重要的问题,我们的结果是沉默的:平均回报和Bt/Mt、盈利能力、资产增长、应计利润、PTt和OHt之间的关系是由于合理或不合理的定价。再次重申,估值方程(3)表明,预期回报随着对预期盈利能力和增长(就像我们衡量的那些)的理性评估而变化,定价是合理的还是不合理的。通过对Bt/Mt中的Mt价格的影响,对预期盈利能力和投资的非理性信念确实会影响预期回报。然而,基于估值方程或明或明的检验,无法揭示平均回报与Bt/Mt之间的关系如何在理性风险差异和非理性信念的影响之间划分。简而言之,尽管通常的主张是相反的,但式(3)的检验本身并不能告诉我们,投资者对决定Mt的盈利能力和投资的预测是合理的还是不合理的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值