大话数据结构-查找-有序表查找

注:本文同步发布于稀土掘金。

3 有序表查找

3.1 折半查找

  折半查找(Binary Search)技术,又称为二分查找,它的前提是线性表中的记录必须是关键码有序(通常从小到大有序),线性表必须采用顺序存储。

  折半查找的基本思想是:在有序表中,取中间记录作为比较对象,若给定值与中间记录的关键字相等,则查找成功;若给定值小于中间记录的关键字,则在中间记录的左半区继续查找;若给定值大于中间记录的关键字,则在中间记录的右半区继续查找。不断重复上述过程,直到查找成功,或所有查找区域无记录,查找失败为止。

  代码有多种实现方式,以下是示例:

/**
 * Binary Search
 *
 * @author Korbin
 * @date 2023-04-19 17:57:03
 **/
public class BinarySearch<T extends Comparable<T>> {

    /**
     * binary search
     * <p>
     * return index in data if searched, else return -1
     *
     * @param data array to search
     * @param key  key to search
     * @return index of key in data
     * @author Korbin
     * @date 2023-04-19 18:30:33
     **/
    public int binarySearch(T[] data, T key) {
        int length = data.length;

        int from = 0;
        int to = length - 1;

        // if key little than data[0] or key greater than data[length - 1], return -1, means search failed
        if (data[from].compareTo(key) > 0 || data[to].compareTo(key) < 0) {
            return -1;
        }

        int mid = ((to - from) + 1) / 2;

        while (from < to) {

            // if data[mid] equals key, then return mid
            if (data[mid].equals(key)) {
                return mid;
            }
            if (data[mid].compareTo(key) < 0) {
                // if key greater than data[mid], then search from [mid + 1, to]
                from = Math.min(mid + 1, length - 1);
            } else if (data[mid].compareTo(key) > 0) {
                // if key little than data[mid], then search from [from, mid - 1]
                to = Math.max(mid - 1, 0);
            }

            if (from == to) {
                // if from equals to, then check if data[from] equals key
                return (data[from].equals(key)) ? from : -1;
            }
            
            mid = from + ((to - from) + 1) / 2;

        }
        return -1;
    }

}

3.2 插值查找

  插值查找(Interpolation Search)是根据要查找的关键字key与查找表中最大最小记录的关键字比较后的查找方法,其核心在于插值公式 k e y − a [ f r o m ] a [ t o ] − a [ f l o w ] \frac {key-a[from]}{a[to]-a[flow]} a[to]a[flow]keya[from]

  从时间复杂度来看,它也是O(logn),但对于表长较大,而关键字又分布比较均匀的查找表来说,插值查找的平均性能要比折半查找算法的性能要好很多。反之,如果数组分布不均匀,用插值查找未必有优势。

  插值查找是在折半查找的基础上进行优化的,在折半查找中,计算mid的算法为:

   m i d = f r o m + 1 2 ( ( t o − f r o m ) + 1 ) mid = from + \frac {1}{2}((to - from) + 1) mid=from+21((tofrom)+1)

  在插值查找算法中,则是:

   m i d = f r o m + k e y − a [ f r o m ] a [ t o ] − a [ f l o w ] ( ( t o − f r o m ) + 1 ) mid = from + \frac {key-a[from]}{a[to]-a[flow]}((to - from) + 1) mid=from+a[to]a[flow]keya[from]((tofrom)+1)

  因此代码只作少量改动:

/**
 * interpolation search
 * <p>
 * return index in data if searched, else return -1
 *
 * @param data array to search
 * @param key  key to search
 * @return index of key in data
 * @author Korbin
 * @date 2023-04-19 18:30:33
 **/
public int interpolationSearch(int[] data, int key) {

    int length = data.length;

    int from = 0;
    int to = length - 1;

    // if key little than data[0] or key greater than data[length - 1], return -1, means search failed
    if (data[from] > key || data[to] < key) {
        return -1;
    }

    int mid = ((key - data[from]) / (data[to] - data[from])) / 2 * ((to - from) + 1);

    while (from < to) {

        // if data[mid] equals key, then return mid
        if (data[mid] == key) {
            return mid;
        }
        if (data[mid] < key) {
            // if key greater than data[mid], then search from [mid + 1, to]
            from = Math.min(mid + 1, length - 1);
        } else if (data[mid] > key) {
            // if key little than data[mid], then search from [from, mid - 1]
            to = Math.max(mid - 1, 0);
        }

        if (from == to) {
            // if from equals to, then check if data[from] equals key
            return (data[from] == key) ? from : -1;
        }

        mid = from + ((key - data[from]) / (data[to] - data[from])) / 2 * ((to - from) + 1);

    }
    return -1;
}

  调整一下mid的计算方式即可。

3.3 斐波那契查找

  以下是一个斐波那契数组:

  斐波那契数组的特性是,后一个元素的值等于前两个元素值的和,即F[K]=F[K-1]+F[K-2]。此外,F[K]/F[K+1]无限接近于0.618。斐波那契查找法依据这一特性,将数据分割成两部分,并把F[K-1]-1作为mid值进行对比处理。

  例如,假设数组长度是8,8在斐波那契数组中的下标是6,那么把数组分为两段,长度分别是F[K-1]=F[5]=5,F[K-2]=F[4]=3,令mid=F[K-1]-1=5-1=4,比较要查找的数值与被查找的数组A中,下标为4的元素的大小。

  在持续查找的过程中,被查找的数组A因为是有序数组,所以如果mid所对应的元素值大于要查找的数值时,进行下一轮查找时,则应到被查找数组的下半段去查找,下半段数组长度是多少呢?上文提到,裴波那契数组的特性F[K]=F[K-1]+F[K-2],而斐波那契查找就是将数组分成两段,前半段长度是F[K-2],后半段长度是F[K-1],因此当我们在后半段查找时,后半段的数组长度是F[K-1],即新的K=K-1,接下来的mid计算方式仍然不变。

  而这种情况下,下标为mid以及其后的元素,在下一轮查找时显然不可以再用于查找,因此它们肯定会大于要查找的这个值,因此我们设置一个变量high,令其初始值为数组的长度,在A[mid]大于要查找的数值时,令high=mid-1,表示最多可以被查找的元素下标是high,对应的元素值是A[high]。

  而如果mid所对应的元素值小于要查找的数值时,需要进行下一轮查找时,因为前半段长度为F[K-2],因此新的K=K-2,而mid的计算方式不再是mid=F[K-1]-1,而是“上一轮的mid”+1+F[K-1]-1,我们设置一个变更low,令其等于“上一轮的mid”+1,那么,mid的计算方式就变成了mid=low+F[K-1]-1,由于第一轮查找时没有“上一轮的mid”,所以如果按照这个公式,第一轮的low则为1,这样可以保证mid的计算公式一直是mid=low+F[K-1]-1。

  根据以上分析,可知:

  (1) 变量mid,表示使用数组中下标为mid的元素与要查找的数值进行比较;

  (2) 变量k,表示被查找的数组长度在斐波那契数组中的位置;

  (3) 变量low,表示从数组的下标为low的元素开始查找,初始值为1,当A[mid]<被查找的元素时,low=mid+1,同时置k=k-2;

  (4) 变量high,表示最多查到数组的下标为high的元素,初始值为数组的最大下标,当A[mid]>被查找的元素时,high=mid-1,同时置k=k-1;

  现在我们来开始尝试,假设有以下数组:

  我们需要从中找到数值59所在的位置。

  首先,初始化,low=1,high=数组的最大下标=10,同时定义一个斐波那契数组:

  然后第一次查找,我们来找k,已知数组长度为11,在斐波那契数组f中并未找到10这个元素,有两个选择:

  如果选择8,即k=6,f[k]=f[6]=8,假设我们要查找的是99,会出现什么情况呢:

  (1) 第一轮,mid=low+f[k-1]-1=1+f[5]-1=1+5-1=5,由于a[mid]<要查找的数值,因此新的k=k-2=3,新的low=mid+1=5+1=6;

  (2) 第二轮,mid=low+f[k-1]-1=6+f[2]-1=6+1-1=6,由于a[mid]<要查找的数值,因此,新的k=k-2=0,新的low=mid+1=6+1=7;

  (3) 第三轮,mid=low+f[k-1]-1=7+f[0-1]-1,无法再继续,而此时仍有a[7]~a[10];

  如果选择13,即k=7,f[k]=f[7]=13,假设我们要查找的是99,会出现什么情况呢:

  (1) 第一轮,mid=low+f[k-1]-1=1+f[6]-1=1+8-1=8,a[8]<99,因此新的k=k-2=4,新的low=mid+1=8+1=9;

  (2) 第二轮,mid=low+f[k-1]-1=9+f[3]-1=9+3-1=11,这时会发现,11已经超过了a的最大下标10,查找直接失败;

  (3) 此时我们进行一些调整,将数组a的长度扩大到f[k]即13位,并补齐后两位的值为f[10],即f[11]=f[12]=f[10]=99,这时再来查询,就可以得到a[11]=99,找到99在数组a的下标为11的位置,而由于原始的a最大下标为10,因此直接返回10即可。

  由此找到规则:当数组长度在斐波那契数组中找不到对应元素时,取与数组长度相邻,但大于数组长度的那个元素的下标作为k,同时将被查找的数组长度扩大到k,并补齐后续元素值使其等于被查找的数组的最后一个元素值。

  因此我们取k=7,此时数组a和f的结构如下所示:

  开始第一轮查找,此时mid=low+f[k-1]-1=1+f[6]-1=1+8-1=8,a[8]=73>59,因此high=mid-1=8-1=7,k=k-1=7-6=6:

  第二轮查找,mid=low+f[k-1]-1=1+f[5]-1=5,a[5]=47<59,因此low=mid+1=5+1=6,k=k-2=6-2=4:

  第三轮查找,mid=low+f[k-1]-1=6+f[2]-1=6+1-1=6,a[6]=59,得到查找结果,返回查找值59所在的下标是6,查找结束。

  依据以上分析,代码实现比较简单:

import java.util.Arrays;

/**
 * 斐波那契查找
 *
 * @author Korbin
 * @date 2023-11-09 09:16:33
 **/
public class FibonacciSearch {

    /**
     * 定义一个斐波那契数组
     *
     * @param length 数组长度
     * @return 斐波那契数组
     * @author Korbin
     * @date 2023-11-09 09:26:32
     **/
    private static int[] fibonacciArray(int length) {
        int[] array = new int[length];
        array[0] = 0;
        if (length == 1) {
            return array;
        } else if (length == 2) {
            array[1] = 1;
            return array;
        } else {
            array[1] = 1;

            for (int i = 2; i < length; i++) {
                array[i] = array[i - 1] + array[i - 2];
            }
            return array;
        }
    }

    /**
     * 查找key在数组array中的下标,找不到时返回-1
     *
     * @param array 被查找的数组
     * @param key   要查找的key
     * @return key在array中的下标
     * @author Korbin
     * @date 2023-11-09 09:28:51
     **/
    private static int fibonacciSearch(int[] array, int key) {

        int length = array.length;
        // 如果被查找的数组只有一位,则直接比较返回
        if (length == 1) {
            if (array[0] == key) {
                return 0;
            } else {
                return -1;
            }
        }

        // 因为是从下标为1的数组开始查找的,因此先比较下标为0的元素
        if (array[0] == key) {
            return 0;
        }

        int[] fibonacciArray = fibonacciArray(length);

        // low初始为1
        int low = 1;
        // high初始为length - 1
        int high = length - 1;

        // 从斐波那契数组中找到k
        int k = 0;
        for (int i = 0; i < length; i++) {
            if (length > fibonacciArray[i]) {
                k++;
            }
        }

        // 如果被查找的数组长度小于k,则扩充数组
        int[] newArray = Arrays.copyOf(array, fibonacciArray[k]);
        if (fibonacciArray[k] > length) {
            for (int i = length; i < fibonacciArray[k]; i++) {
                newArray[i] = array[length - 1];
            }
        }

        // 开始查找
        while (low <= high) {
            // 计算mid
            int mid = low + fibonacciArray[k - 1] - 1;
            if (key < newArray[mid]) {
                high = mid - 1;
                k = k - 1;
            } else if (key > newArray[mid]) {
                low = mid + 1;
                k = k - 2;
            } else {
                if (mid < length) {
                    return mid;
                } else {
                    return length - 1;
                }
            }
        }

        return -1;
    }

    public static void main(String[] args) {
        int[] array = new int[]{0, 1, 16, 24, 35, 47, 59, 62, 73, 87, 99};
        for (int j : array) {
            int index = fibonacciSearch(array, j);
            System.out.println("元素" + j + "的下标是" + index);
        }
    }

}
  • 24
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
哈希是一种高效的数据结构,它能够在平均情况下以常数时间O(1)进行插入、删除和查找操作。在C语言中,我们可以使用哈希来解决一些常见的问题,比如查找一个元素或者统计元素出现的频率。 在实现哈希时,我们需要以下几个关键组成部分: 1. 哈希函数:哈希函数将输入的数据映射到哈希中的某个位置,它应该具备良好的分布性,即使数据分布不均匀,也能使得元素尽可能均匀地散列到不同的槽位中。 2. 数组:哈希通常使用一个数组来存储数据,数组的大小可以根据实际情况进行调整。每个槽位可以存储一个元素或者一个指向链/红黑树等数据结构的指针,用于解决哈希冲突。 3. 冲突处理:由于不同的元素可能被映射到相同的槽位上,所以我们需要解决冲突的问题。常见的解决方法有开放地址法和链地址法。开放地址法会寻找下一个可用的槽位,直到找到一个空闲位置,而链地址法则使用链或其他数据结构将冲突的元素串联起来。 使用C语言实现哈希时,我们可以先定义一个结构体来示哈希的每个槽位,然后使用数组来存储这些结构体。结构体可以包含键值对等信息,以及指向下一个元素的指针(用于链地址法)。然后,我们可以根据需要实现插入、删除和查找等操作,使用哈希函数将元素映射到相应的位置,并根据具体的冲突处理方式解决冲突。 总之,哈希是一种非常实用的数据结构,它在处理大量数据时能够提供高效的查找和操作效率。在C语言中,我们可以根据具体需求实现自己的哈希,或者使用已有的开源库来简化开发过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值