Python相关

29 篇文章 2 订阅 ¥79.90 ¥99.00
这篇博客介绍了如何结合Cython和TensorFlow来构建一个深度神经网络(DNN)模型。首先,通过Cython编译Python脚本以提高效率。接着,加载鸢尾花数据集并用TensorFlow的DNNClassifier创建一个3层的神经网络,每层节点数分别为100、200和100。模型经过2000步的训练后,评估了其在测试集上的精度。
摘要由CSDN通过智能技术生成
cython --embed test.py
gcc -Os -I /usr/local/include/python3.6m -o test test.c -lpython3.6m -lpthread -lm -lutil -ldl


#加载包
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np


# 数据集名称,数据集要放在你的工作目录下
IRIS_TRAINING = "d:/mhuanjing.csv"
IRIS_TEST = "d:/mhuanjing.csv"

# 数据集读取,训练集和测试集
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=IRIS_TRAINING,tar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

都市朝阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值