cython --embed test.py
gcc -Os -I /usr/local/include/python3.6m -o test test.c -lpython3.6m -lpthread -lm -lutil -ldl
#加载包 from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np # 数据集名称,数据集要放在你的工作目录下 IRIS_TRAINING = "d:/mhuanjing.csv" IRIS_TEST = "d:/mhuanjing.csv" # 数据集读取,训练集和测试集 training_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=IRIS_TRAINING,tar
Python相关
最新推荐文章于 2024-06-08 14:37:14 发布
这篇博客介绍了如何结合Cython和TensorFlow来构建一个深度神经网络(DNN)模型。首先,通过Cython编译Python脚本以提高效率。接着,加载鸢尾花数据集并用TensorFlow的DNNClassifier创建一个3层的神经网络,每层节点数分别为100、200和100。模型经过2000步的训练后,评估了其在测试集上的精度。
摘要由CSDN通过智能技术生成