这道题是说要找到最小的全部由1组成的能被n整除的数。
显然我们知道这样的定理:
(x1 + x2 + x3 + ...... + xk)%n = ((x1%n) + (x2%n) + (x3%n) + ..... + (xk%n))%n
同样的道理,我们所求的只包含1的整数就可转化成为1 + 10 + 100 + 1000 + ..... + 10^k。我们只需要每个除n之后的余数累加的和能够整除n就行了,最先找到的这个k就是这个数中所含有的1的个数。
简单的题,实现见代码:
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
int solve(int n)
{
if(n == 0)
return 1;
int cnt = 1, left = 1, cur = 1;
while((left%n) != 0)
{
cur *= 10;
cnt++;
cur %= n;
left += cur;
}
return cnt;
}
int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
printf("%d\n", solve(n));
}
return 0;
}