POJ 2551 简单数学(取模的性质)

       这道题是说要找到最小的全部由1组成的能被n整除的数。

       显然我们知道这样的定理:

              (x1 + x2 + x3 + ...... + xk)%n = ((x1%n) + (x2%n) + (x3%n) + ..... + (xk%n))%n

       同样的道理,我们所求的只包含1的整数就可转化成为1 + 10 + 100 + 1000 + ..... + 10^k。我们只需要每个除n之后的余数累加的和能够整除n就行了,最先找到的这个k就是这个数中所含有的1的个数。

       简单的题,实现见代码:

#include <iostream>
#include <cstdlib>
#include <cstdio>

using namespace std;

int solve(int n)
{
    if(n == 0)
        return 1;
    int cnt = 1, left = 1, cur = 1;
    while((left%n) != 0)
    {
        cur *= 10;
        cnt++;
        cur %= n;
        left += cur;
    }
    return cnt;
}

int main()
{
    int n;
    while(scanf("%d", &n) != EOF)
    {
        printf("%d\n", solve(n));
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值