看一遍就理解:动态规划详解

我们刷leetcode的时候,经常会遇到动态规划类型题目。动态规划问题非常非常经典,也很有技巧性,一般大厂都非常喜欢问。今天跟大家一起来学习动态规划的套路,文章如果有不正确的地方,欢迎大家指出哈,感谢感谢~

假设跳到第n级台阶的跳数我们定义为f(n),很显然就可以得出以下公式:

f(10) = f(9)+f(8)
f (9)  = f(8) + f(7)
f (8)  = f(7) + f(6)
...
f(3) = f(2) + f(1)

即通用公式为: f(n) = f(n-1) + f(n-2)

那f(2) 或者 f(1) 等于多少呢?

因此可以用递归去解决这个问题:

class Solution {
    public int numWays(int n) {
    if(n == 1){
        return 1;
    }
     if(n == 2){
        return 2;
    }
    return numWays(n-1) + numWays(n-2);
    }
}
  • 什么是动态规划?
  • 动态规划的核心思想
  • 一个例子走进动态规划
  • 动态规划的解题套路
  • 什么是动态规划?

    动态规划(英语:Dynamic programming,简称 DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。

    ★ dynamic programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems.

    以上定义来自维基百科,看定义感觉还是有点抽象。简单来说,动态规划其实就是,给定一个问题,我们把它拆成一个个子问题,直到子问题可以直接解决。然后呢,把子问题答案保存起来,以减少重复计算。再根据子问题答案反推,得出原问题解的一种方法。

    ★ 一般这些子问题很相似,可以通过函数关系式递推出来。然后呢,动态规划就致力于解决每个子问题一次,减少重复计算,比如 斐波那契数列就可以看做入门级的经典动态规划问题。
  • 动态规划核心思想

    动态规划最核心的思想,就在于拆分子问题,记住过往,减少重复计算

  • 一个例子带你走进动态规划 -- 青蛙跳阶问题

    暴力递归

    ★ leetcode原题:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 10 级的台阶总共有多少种跳法。

    有些小伙伴第一次见这个题的时候,可能会有点蒙圈,不知道怎么解决。其实可以试想:

  • 要想跳到第10级台阶,要么是先跳到第9级,然后再跳1级台阶上去;要么是先跳到第8级,然后一次迈2级台阶上去。

  • 同理,要想跳到第9级台阶,要么是先跳到第8级,然后再跳1级台阶上去;要么是先跳到第7级,然后一次迈2级台阶上去。
  • 要想跳到第8级台阶,要么是先跳到第7级,然后再跳1级台阶上去;要么是先跳到第6级,然后一次迈2级台阶上去。
  • 当只有2级台阶时,有两种跳法,第一种是直接跳两级,第二种是先跳一级,然后再跳一级。即f(2) = 2;
  • 当只有1级台阶时,只有一种跳法,即f(1)= 1;
  • class Solution {
        public int numWays(int n) {
        if(n == 1){
            return 1;
        }
         if(n == 2){
            return 2;
        }
        return numWays(n-1) + numWays(n-2);
        }
    }

去leetcode提交一下,发现有问题,超出时间限制了

其实,还可以用动态规划解决这道题。

自底向上的动态规划

动态规划跟带备忘录的递归解法基本思想是一致的,都是减少重复计算,时间复杂度也都是差不多。但是呢:

  • 带备忘录的递归,是从f(10)往f(1)方向延伸求解的,所以也称为自顶向下的解法。
  • 动态规划从较小问题的解,由交叠性质,逐步决策出较大问题的解,它是从f(1)往f(10)方向,往上推求解,所以称为自底向上的解法。

动态规划有几个典型特征,最优子结构、状态转移方程、边界、重叠子问题。在青蛙跳阶问题中:

  • f(n-1)和f(n-2) 称为 f(n) 的最优子结构
  • f(n)= f(n-1)+f(n-2)就称为状态转移方程
  • f(1) = 1, f(2) = 2 就是边界啦
  • 比如f(10)= f(9)+f(8),f(9) = f(8) + f(7) ,f(8)就是重叠子问题。

我们来看下自底向上的解法,从f(1)往f(10)方向,想想是不是直接一个for循环就可以解决啦,如下:带备忘录的递归解法,空间复杂度是O(n),但是呢,仔细观察上图,可以发现,f(n)只依赖前面两个数,所以只需要两个变量a和b来存储,就可以满足需求了,因此空间复杂度是O(1)就可以啦动态规划实现代码如下:

public class Solution {
    public int numWays(int n) {
        if (n<= 1) {
            return 1;
        }
        if (n == 2) {
            return 2;
        }
        int a = 1;
        int b = 2;
        int temp = 0;
        for (int i = 3; i <= n; i++) {
            temp = (a + b)% 1000000007;
            a = b;
            b = temp;
        }
        return temp;
    }
    }

在百忙之中写一篇文章也比较辛苦,别忘了点个赞! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值