题目描述
在桌面上有一排硬币,共 N枚,每一枚硬币均为正面朝上。现在要把所有的硬币翻转成反面朝上,规则是每次可翻转任意 N−1 枚硬币(正面向上的被翻转为反面向上,反之亦然)。求一个最短的操作序列(将每次翻转 N−1枚硬币成为一次操作)。
输入格式
一个自然数 N(N 为不大于 100 的偶数)。
输出格式
第一行包含一个整数 SS,表示最少需要的操作次数。
接下来的 SS 行每行分别表示每次操作后桌上硬币的状态(一行包含 N 个整数 0 或1 ,表示每个硬币的状态,0 表示正面向上,1 表示反面向上。不允许输出多余空格。
对于有多种操作方案的情况,则只需操作的字典序最小输出一种。
操作的字典序是指,对于一次操作中的每个位置,1 表示翻转,0 表示不反转。
但是需要你输出的是每一次操作完的状态,0 表示正面朝上,1 表示反面朝上。
输入输出样例
输入 #1
4
输出 #1
4 0111 1100 0001 1111
此题是道大水题然而我不会做
我先想了好久,广搜,深搜……
然后才发现:
翻n-i枚硬币,就是有一枚硬币没有翻,相当于翻了一枚硬币
所以题目就变成了:
在桌面上有一排硬币,共N枚,每一枚硬币均为正面朝上。现在要把所有的硬币翻转成反面朝上,规则是每次可翻转任意**
1
**枚硬币(正面向上的被翻转为反面向上,反之亦然)。求一个最短的操作序列(将每次翻转N-1枚硬币成为一次操作)。
所以只要把n枚硬币依次翻过来就可以了,次数也就是n次
很简单是不是?
#include <iostream>
#include <cstdio>
using namespace std;
int main(){
int n;
int a[105];
cin>>n;
cout<<n<<endl;//次数永远是n次,于是毫不留情的输出n
for (int i=1;i<=n;i++) //硬币开始时是正面,正面是0
a[i]=0;
for (int i=1;i<=n;i++){ //将n枚硬币依次翻过来
for (int j=1;j<=n;j++)//将另外n-1枚反过来
if (j!=i){
a[j]=1-a[j];//翻硬币,等同于异或
}
for (int j=1;j<=n;j++)
cout<<a[j];//输出每枚硬币的状态
cout<<endl;
}
return 0;
}
在百忙之中写一篇题解也比较辛苦,别忘了点个赞!