题意:求
∑i=1ni−1modpk,p≤105
不知道是啥题。
我们可以注意到,当 n<p 的时候显然是一定有解的,而当 n≥p 时,对于每个 kp 项,可能单独没有逆元,但是也可能 ∑⌊n/p⌋k=11/k 是 p 的倍数把
设
F(n)=∑i=1ni−1,G(n)=∑i=1,i≠jpni−1
那么我们有
F(n)=G(n)+F(⌊n/p⌋)/p
因此我们每次可以将
n
的规模缩小为了方便分析,不妨我们先设 p∣n ,这样我们可以有
G(n)=∑a=1p−1∑b=0⌊n/p⌋−11a+bp
这里我们还是比较难进行快速计算,可以想办法把形式比较好的
1a+bp
给拆开,比如幂级数展开:
1a+bp=a−1∑i=0∞(−1)ibiaipi
注意我们是在模
pk
的意义下做的这个玩意,因此我们可以将
k−1
以后的项全部直接删掉。故得到
G(n)=∑a=1p−1∑b=0⌊n/p⌋−1a−1∑i=0k−1(−1)ibiaipi=∑i=0k−1(−1)i∑a=1p−1piai+1∑b=0⌊n/p⌋−1bi
推至此,我们可以发现前面的 ∑k−1i=0∑p−1a=1piai+1 是可以在 O(kp) 的时间内计算出来的,接下来的问题就是计算 ∑⌊n/p⌋b=0bi 了。
出题人似乎给的做法是伯努利数或者直接矩阵乘法?然而我都不会那些东西所以YY了一下 k 次方和。
以下是我YY的计算
设 Sk(n) 表示上面要求的这个式子,尝试用组合数来计算这串东西。
注意到
(nk)=nk⎯⎯k!=∑ki=0(−1)i+ks(k,i)nik!
其中
s(n,k)
表示第一类斯特林数
s(n,k)=(n−1)s(n−1,k)+s(n−1,k−1)
。那么
Sk(n)=∑j=0n(k!(jk)−∑i=0k−1(−1)i+ks(k,i)ji)=k!∑j=0n(jk)−∑i=0k−1(−1)i+ks(k,i)∑j=0nji=k!(n+1k+1)−∑i=0k−1(−1)i+ks(k,i)Si(n)=(n+1)k+1⎯⎯⎯⎯⎯k+1−∑i=0k−1(−1)i+ks(k,i)Si(n)
于是我们只需要 O(k2) 地预处理出第一类斯特林数然后就可以按k来递推算了,当然边界是 S1(n)=n(n+1)/2 。
回到原问题中,既然我们要求的是 ∑⌊n/p⌋−1b=0bi ,那么就可以直接代进去得到:
G(n)=∑i=0k−1(−1)i∑a=1p−1piai+1Si(⌊n/p⌋−1)
到了这一步,我们就可以愉快地将 pi 和 1ai+1 全都预处理出来,然后就可以在 O(kp) 的时间计算 G(n) 了。
补充一下当 p∤n 的时候,我们可以把后面的余项划归入前面一部分,若设 r=nmodp ,则此时
G(n)=∑i=0k−1(−1)i∑a=1rpiai+1Si(⌊n/p⌋)+∑i=0k−1(−1)i∑a=r+1p−1piai+1Si(⌊n/p⌋−1)
再回到上一步 F(n)=G(n)+F(n/p)/p ,也就可以递归计算了。
至此我们只需要预处理一些东西,然后递归快速计算就可以辣。
时间复杂度?每一层计算 G 的复杂度是
应该有更优的做法>_<
为毛一直都没有人告诉我上面的幂级数展开少了个
(−1)i
。。。。调了好久啊TAT
奇怪的Code:(懒得删注释了)
#include <bits/stdc++.h>
//using namespace std;
#define rep(i,a,b) for(int i = a , _ = b ; i <= _ ; i ++)
#define per(i,a,b) for(int i = a , _ = b ; i >= _ ; i --)
#define cr(x) memset(x , 0 , sizeof x)
#define gprintf(...) //fprintf(stderr , __VA_ARGS__)
typedef long long ll;
const int maxp = 100007;
const int maxk = 121;
ll mod , n , s[maxk][maxk] , inva[maxp];
ll powa[maxp][maxk] , S[maxk] , powp[maxk];
inline ll add(ll a , ll b , ll mod) { a = (a + b) % mod ; if (a < 0) a += mod ; if (a >= mod) a -= mod ; return a ; }
inline ll dec(ll a , ll b , ll mod) { a = (a - b) % mod ; if (a < 0) a += mod ; if (a >= mod) a -= mod ; return a ; }
inline ll qmul(ll a , ll b , ll p) {
return (a * b - (ll)(a / (double)p * b + 1e-3) * p + p) % p;
}
#define neg(x) (((x) & 1) ? -1 : 1)
int p , k;
void input() {
scanf("%d%d%lld" , &p , &k , &n);
mod = 1;
rep (i , 1 , k) mod = mod * p;
}
void init_stirling(int k , ll mod) {
// gprintf("initalization of stirling mod %lld\n" , mod);
s[0][0] = 1;
s[1][0] = 0 , s[1][1] = 1;
rep (i , 2 , k) {
s[i][0] = 0;
rep (j , 1 , k) {
s[i][j] = add(qmul(i - 1 , s[i - 1][j] , mod) , s[i - 1][j - 1] , mod);
// gprintf("%lld%c" , s[i][j] , j == k ? '\n' : ' ');
}
}
}
void init_inv(int k , ll mod) {
// gprintf("calculating inverse of mod %lld\n" , mod);
inva[1] = 1;
powa[1][1] = 1;
rep (i , 2 , p - 1) {
inva[i] = dec(0 , qmul(inva[mod % i] , mod / i , mod) , mod);
// gprintf("%lld\n" , qmul(inva[i] , i , mod));
powa[i][1] = inva[i];
}
powp[0] = 1;
rep (i , 1 , k - 1) powp[i] = powp[i - 1] * p;
rep (a , 1 , p - 1) {
ll t = inva[a];
rep (i , 2 , k)
powa[a][i] = qmul(powa[a][i - 1] , t , mod);
}
}
namespace ASS {
#include <assert.h>
static ll tmp[maxk];
static ll _pow[100 * 10][25];
void _S(ll n , ll mod) {
rep (i , 1 , n) {
_pow[i][1] = i;
rep (j , 2 , k)
_pow[i][j] = qmul(_pow[i][j - 1] , i , mod);
}
rep (i , 0 , k) {
tmp[i] = 0;
rep (j , 1 , n)
tmp[i] = add(tmp[i] , _pow[j][i] , mod);
if (!i) tmp[i] = (n + 1) % mod;
gprintf("%lld%c" , tmp[i] , i == k ? '\n' : ' ');
assert(tmp[i] == S[i]);
}
}
}
void get_S(ll n , ll mod , int k) {
// gprintf("calculating sum %lld of power %d\n" , n , k);
S[0] = (n + 1) % mod;
// if (!n) S[0] = 1;
if (n < k) {
static ll pown[maxk][maxk];
rep (i , 1 , n) {
pown[i][1] = i;
rep (j , 2 , k)
pown[i][j] = qmul(pown[i][j - 1] , i , mod);
}
rep (i , 1 , k) {
S[i] = 0;
rep (j , 1 , n)
S[i] = add(S[i] , pown[j][i] , mod);
}
} else {
int cur_k = -1;
rep (K , 1 , k) {
S[K] = 1;
rep (j , 0 , K) {
if ((n + 1 - j) % (K + 1) == 0)
S[K] = qmul((n + 1 - j) / (K + 1) , S[K] , mod);
else
S[K] = qmul(n + 1 - j , S[K] , mod);
}
int cur_i = cur_k;
rep (i , 0 , K - 1) {
S[K] = dec(S[K] , cur_i * qmul(s[K][i] , S[i] , mod) , mod);
cur_i = - cur_i;
}
cur_k = - cur_k;
}
}
#ifdef DEBUG
rep (i , 0 , k) {
gprintf("%lld%c" , S[i] , i == k ? '\n' : ' ');
}
ASS::_S(n , mod);
#endif
}
ll G(ll n , ll mod , int k) {
init_inv(k , mod);
init_stirling(k , mod);
// gprintf("calculating G(%lld , %lld)\n" , n , mod);
ll ret = 0;
if (n % p == 0) {
get_S(n / p - 1 , mod , k);
rep (a , 1 , p - 1)
rep (i , 0 , k - 1) {
// gprintf("p^%d : %lld , 1/%d^(%d+1) %lld , S[%d] : %lld\n" , i , powp[i] , a , i , powa[a][i + 1] , i , S[i]);
ret = add(ret , neg(i) * qmul(qmul(powp[i] , powa[a][i + 1] , mod) , S[i] , mod) , mod);
}
} else {
if (n < p) {
rep (i , 1 , n)
ret = add(ret , inva[i] , mod);
gprintf("result of G(%lld , %lld) = %lld\n" , n , mod , ret);
return ret;
}
ll r = n % p;
get_S(n / p , mod , k);
rep (a , 1 , r)
rep (i , 0 , k - 1) {
// gprintf("p^%d : %lld , 1/%d^(%d+1) %lld , S[%d] : %lld\n" , i , powp[i] , a , i , powa[a][i + 1] , i , S[i]);
ret = add(ret , neg(i) * qmul(qmul(powp[i] , powa[a][i + 1] , mod) , S[i] , mod) , mod);
}
get_S(n / p - 1 , mod , k);
rep (a , r + 1 , p - 1)
rep (i , 0 , k - 1)
ret = add(ret , neg(i) * qmul(qmul(powp[i] , powa[a][i + 1] , mod) , S[i] , mod) , mod);
}
gprintf("result of G(%lld , %lld) = %lld\n" , n , mod , ret);
return ret;
}
ll F(ll n , ll mod , int k) {
if (!n) return 0;
return (G(n , mod , k) + F(n / p , mod * p , k + 1) / p) % mod;
}
void solve() {
// printf("%lld\n" , G(102728 , 823543));
ll ans = F(n , mod , k);
printf("%lld\n" , ans);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("math.in" , "r" , stdin);
#endif
input();
solve();
return 0;
}