代码随想录 Day1 数组理论基础,704.二分查找,27.移除元素,977.有序数组的平方。

1.数组理论基础

数组是存放在连续内存空间上的相同类型数据的集合。

数组可以方便的通过下标索引的方式获取到下标对应的数据。

(1)数组下标都是从0开始的。

(2)数组内存空间的地址是连续的。

所以在删除或增添元素时,就难免要移动其他元素的地址。

数组的元素是不能删的,只能覆盖。

Java的二维数组每一行头节点的地址是没有规则的,可能是如下排列的方式:

2.二分查找

力扣题目链接:. - 力扣(LeetCode)

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

这道题目的前提是有序数组,同时强调数组中无重复元素。

区间的定义就是不变量。

第一种解法

[left,right]左右区间的边界都是有意义可以取到的。初始化时right就要初始化为num.length-1,然后在循环判断的时候left和right是可以相等的,然后在条件判断的时候,right更新为middle-1,因为right是可以取到的,middle这个位置上的值明显不等于target,所以为了避免重复,right就取middle-1。

public class binary_search {
    public int search_1(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        while (left <= right) {//左闭右闭
            int mid = left + (right - left) / 2;//执行整数除法,结果会自动向下取整,即舍去小数部分。这意味着如果 left 和 right 的和是奇数,那么结果会丢失 0.5 的值。
            if (nums[mid] == target) {
                return mid;
            } else if (nums[mid] > target) {
                right = mid - 1;//!!!
            } else {
                left = mid + 1;
            }
        }
        return -1;
    }
}
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

第二种解法

[left,right)区间左边界是有意义可以取到的,右边界是取不到的。right初始化为num.length(因为right取不到,如果赋值为num.length-1就漏掉了最后一个值),然后在循环判断的时候left和right是不能相等的,left和right相等左闭右开区间中没有有效的值,然后在条件判断的时候,right的更新是middle,因为right是不可以取到的。

public class binary_search {
public int search_2(int[] nums, int target) {
        int left = 0;
        int right = nums.length;
        while (left < right) {//左闭右开
            int mid = left + (right - left) / 2;//两个整数相加可能导致它们的和超过 int 类型的最大值(Integer.MAX_VALUE),从而导致溢出。而先计算差值再除以 2 可以减少这种风险,因为差值通常比原始的 left 和 right 值小得多。
            if (nums[mid] == target) {
                return mid;
            } else if (nums[mid] > target) {
                right = mid;//!!!
            } else {
                left = mid + 1;
            }
        }
        return -1;
    }
}
  • 时间复杂度:O(log n)
  • 空间复杂度:O(1)

2.移除元素

给你一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,并返回移除后数组的新长度。

元素的顺序可以改变,不需要考虑数组中超出新长度后面的元素。

数组的元素在内存地址中是连续的,不能单独删除数组中的某个元素,只能覆盖。

暴力解法

两层for循环,一个for循环遍历数组元素 ,第二个for循环更新数组。

public class remove_element {
    public int removeElement1(int[] nums, int val) {
        int size = nums.length;
        for (int i = 0; i < size; i++) {
            if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位
                for (int j = i + 1; j < size; j++) {
                    nums[j - 1] = nums[j];
                }
                i--; // 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位
                size--; // 此时数组的大小-1
            }
        }
        return size;

    }
}
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

双指针法

(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。

  • 快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组。
  • 慢指针:指向更新新数组下标的位置。

public class remove_element {
 public  int removeElement2(int []nums,int val){
        int slowIndex=0;
        for (int fastIndex=0;fastIndex<nums.length;fastIndex++){
            if (val!=nums[fastIndex]){
                nums[slowIndex++]=nums[fastIndex];
            }
        }
        return  slowIndex;
    }
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

3.有序数组的平方

给你一个按非递减顺序排序的整数数组nums,返回每个数字的平方组成的新数组,要求也按非递减顺序排序。

暴力排序:每个数平方之后,排个序。

public class sorted_array_of_squares {
        public int[] sortedSquares1(int[] nums) {
            for (int i = 0; i < nums.length; i++) {
                nums[i] = nums[i] * nums[i];
            }
            Arrays.sort(nums);
            return nums;
        }
}

这个时间复杂度是 O(n + nlogn), 可以说是O(nlogn)的时间复杂度,但为了和下面双指针法算法时间复杂度有鲜明对比,我记为 O(n + nlog n)。

双指针法

数组其实是有序的, 只不过负数平方之后可能成为最大数了。

那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。

此时可以考虑双指针法了,i指向起始位置,j指向终止位置。

定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。

如果A[i] * A[i] < A[j] * A[j] 那么result[k--] = A[j] * A[j]; 。

如果A[i] * A[i] >= A[j] * A[j] 那么result[k--] = A[i] * A[i]; 。

如动画所示:

public class sorted_array_of_squares {
   public  int[]sortedSquares2(int []nums){
            int l = 0;
            int r = nums.length - 1;
            int[] res = new int[nums.length];
            int j = nums.length - 1;
            while(l <= r){
                if(nums[l] * nums[l] > nums[r] * nums[r]){
                    res[j--] = nums[l] * nums[l++];
                }else{
                    res[j--] = nums[r] * nums[r--];
                }
            }
            return res;
        }
}

此时的时间复杂度为O(n),相对于暴力排序的解法O(n + nlog n)还是提升不少的。

空间复杂度:O(1)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值