NKOI 3686 最大子段和

P3686  最大子段和
时间限制 :  - MS    空间限制 :  65536 KB 
问题描述

给你一个包含n个整数的序列,要求从中取出m个不相交的子段,要求这m个子段的和尽肯能大,输出这个最大和。    

例如,n=7,m=2, 序列如下:    

-2  1  4   -2  3  -2  3

最优方案取出的两段为{1 4}   {3  -2  3}  这两段的和为9

 

输入格式

第一行,两个整数n和m
第二行,n个空格间隔的整数,表示整数数列

输出格式

一行,一个整数,表示所求答案

样例输入

7 2
-2 1 4 -2 3 -2 3

样例输出

9

提示

1<=n <=100,000        1<=m<=300  且 m<=n   

 数列中的数字范围[-50000,50000]


我们可以发现这是一道动规,用f[i][j]表示前i个数分j段的最大和
我们再用sum做输入数组的前缀和
那么我们可以得到以下动规方程:
f[]i[j]=max(f[i-1][j],f[k][j-1]+sum[i]-sum[k])
即要么放弃这个数(情况1),要么将第k+1到第i个分成一段(情况2),转移方程就完成了
然后我们想,f[i][j]要开到f[100005][305]大概120m,无法满足题目的要求,因此我们应该使用滚动数组
我们发现f[i][j]只与j和j-1有关,所以我们在使用数组的时候只用讨论j%2的情况即可
但是由于数据范围较大,根据上面的动规方程我们要进行三次循环,所以需要优化算法效率
在讨论f[k][j-1]+sum[i]-sum[k]时,由于i相对于k是一个常数,所以我们可以用一个best[j]数组记录在讨论将i个数分成j段时情况2的最大和,从而消掉k的循环
后来发现当输入的数据都为负数时,由于算法的不完美性,得出了错误答案,因此总结得出若输入的全是负数,则输出最大的m个数的和
#include<cstdio> 
#include<iostream> 
#include<algorithm> 
using namespace std;
const int inf=2e9;
int a[100005],f[100005][2],sum[100005],best[305]; 
bool cmp(int a,int b){ 
    return a>b; 
}  
int main(){ 
    int n,m,i,j,k; 
    bool flag=true; 
    cin>>n>>m; 
    for(i=1;i<=n;i++){ 
        scanf("%d",&a[i]); 
        if(a[i]>0)flag=false; 
        sum[i]=sum[i-1]+a[i]; 
    } 
    if(flag){ 
        int sum=0; 
        sort(a+1,a+1+n,cmp); 
        for(i=1;i<=m;i++)sum+=a[i]; 
        cout<<sum;
	return 0; 
    } 
    for(j=1;j<=m;j++){ 
        best[j]=-inf; 
        for(i=j;i<=n;i++){ 
            f[i][j&1]=max(f[i-1][j&1],sum[i]+best[j-1]); 
            best[j-1]=max(best[j-1],f[i][(j-1)&1]-sum[i]); //更新best数组
        } 
    } 
    cout<<f[n][m&1]; 
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值