P3686 最大子段和
时间限制 :
- MS
空间限制 :
65536 KB
问题描述
给你一个包含n个整数的序列,要求从中取出m个不相交的子段,要求这m个子段的和尽肯能大,输出这个最大和。
例如,n=7,m=2, 序列如下:
-2 1 4 -2 3 -2 3
最优方案取出的两段为{1 4} {3 -2 3} 这两段的和为9
输入格式
第一行,两个整数n和m
第二行,n个空格间隔的整数,表示整数数列
输出格式
一行,一个整数,表示所求答案
样例输入
7 2
-2 1 4 -2 3 -2 3
样例输出
9
提示
1<=n <=100,000 1<=m<=300 且 m<=n
数列中的数字范围[-50000,50000]
我们可以发现这是一道动规,用f[i][j]表示前i个数分j段的最大和
我们再用sum做输入数组的前缀和
那么我们可以得到以下动规方程:
f[]i[j]=max(f[i-1][j],f[k][j-1]+sum[i]-sum[k])
即要么放弃这个数(情况1),要么将第k+1到第i个分成一段(情况2),转移方程就完成了
然后我们想,f[i][j]要开到f[100005][305]大概120m,无法满足题目的要求,因此我们应该使用滚动数组
我们发现f[i][j]只与j和j-1有关,所以我们在使用数组的时候只用讨论j%2的情况即可
但是由于数据范围较大,根据上面的动规方程我们要进行三次循环,所以需要优化算法效率
在讨论f[k][j-1]+sum[i]-sum[k]时,由于i相对于k是一个常数,所以我们可以用一个best[j]数组记录在讨论将i个数分成j段时情况2的最大和,从而消掉k的循环
后来发现当输入的数据都为负数时,由于算法的不完美性,得出了错误答案,因此总结得出若输入的全是负数,则输出最大的m个数的和
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int inf=2e9;
int a[100005],f[100005][2],sum[100005],best[305];
bool cmp(int a,int b){
return a>b;
}
int main(){
int n,m,i,j,k;
bool flag=true;
cin>>n>>m;
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]>0)flag=false;
sum[i]=sum[i-1]+a[i];
}
if(flag){
int sum=0;
sort(a+1,a+1+n,cmp);
for(i=1;i<=m;i++)sum+=a[i];
cout<<sum;
return 0;
}
for(j=1;j<=m;j++){
best[j]=-inf;
for(i=j;i<=n;i++){
f[i][j&1]=max(f[i-1][j&1],sum[i]+best[j-1]);
best[j-1]=max(best[j-1],f[i][(j-1)&1]-sum[i]); //更新best数组
}
}
cout<<f[n][m&1];
}
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int inf=2e9;
int a[100005],f[100005][2],sum[100005],best[305];
bool cmp(int a,int b){
return a>b;
}
int main(){
int n,m,i,j,k;
bool flag=true;
cin>>n>>m;
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]>0)flag=false;
sum[i]=sum[i-1]+a[i];
}
if(flag){
int sum=0;
sort(a+1,a+1+n,cmp);
for(i=1;i<=m;i++)sum+=a[i];
cout<<sum;
return 0;
}
for(j=1;j<=m;j++){
best[j]=-inf;
for(i=j;i<=n;i++){
f[i][j&1]=max(f[i-1][j&1],sum[i]+best[j-1]);
best[j-1]=max(best[j-1],f[i][(j-1)&1]-sum[i]); //更新best数组
}
}
cout<<f[n][m&1];
}