背包问题的一点看法

开篇

  • 背包问题已经被人讲得很透彻了,上古大神写的《背包九讲》已经相当详细的阐述了背包问题,本文不会过多赘述,主要总结一些有关背包的有趣的玩意。

朴素的01背包/完全背包

  • 01背包和完全背包是非常类似的问题,01背包的特点是每种物品最多只能取一个,而完全背包每种物品都可以任意取。

  • 以下状态为前i种物品,背包容量为j的最大价值,volume是体积,value是价值。

  • 01背包的状态转移方程。

f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] ,   f [ i − 1 ] [ j − v o l [ i ] ] + v a l [ i ] ) f[i][j]=max(f[i-1][j],~f[i-1][j-vol[i]]+val[i]) f[i][j]=max(f[i1][j], f[i1][jvol[i]]+val[i])

  • 完全背包的状态转移方程.

f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] ,   f [ i ] [ j − v o l [ i ] ] + v a l [ i ] ) f[i][j]=max(f[i-1][j],~f[i][j-vol[i]]+val[i]) f[i][j]=max(f[i1][j], f[i][jvol[i]]+val[i])

  • 首先, f [ i ] [ j ] f[i][j] f[i][j]关于i,j单调递增,考虑到物品种类数越多,就能填得越满;背包的容积越大就越能放下更多的物品。所以答案便是最后一个元素。

  • 其次,考虑第i种物品的时候,选择不放的时候均是 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]相当于只考虑了前i-1种物品。

  • 然后,如果考虑到再放一个物品的时候,01背包,的来源必须是前 f [ i − 1 ] [ j − v o l [ i ] ] f[i-1][j-vol[i]] f[i1][jvol[i]],因为01背包中每个物品最多只能取一次;而完全背包,可以在前i种的基础上继续考虑。

  • 使用滚动数组的方法,我们可以优化空间复杂度,对于01背包我们使用倒序放入,如果我们把当前所在的体积称为游标,游标未遍历过的地方便是只考虑前i-1种的时候的最大价值;对于完全背包,我们使用正序,可以在考虑了前i种的基础上再次考虑第i种。

  • 关于完全背包,体积为0的时候,可以是考虑前任意种的最大值。

  • 一道01背包的简单题:传送门

int f[1005];//初始为0,可以看成考虑0种物品时候的最大价值
void solve() {
    int t, m;
    cin >> t >> m;
    for (int i = 0; i < m; i++) {//考虑放入所有物品
        int x, y;
        cin >> x >> y;
        for (int j = t; j >= x; j--) {//滚动
        //j左侧是未遍历过的,是不考虑当前物品的;右侧则是遍历过的
            f[j] = max(f[j], f[j - x] + y);
        }
    }
    cout << f[t] << '\n';
}
const int N = 3005;
int f[1005];
void solve() {
    int n, v;
    cin >> n >> v;
    for (int i = 0; i < n; i++) {
        int vi, wi;
        cin >> vi >> wi;
        for (int j = vi; j <= v; j++) {//正着来
            f[j] = max(f[j], f[j - vi] + wi);
        }
    }
    cout << f[v] << '\n';
}

求方案数的“背包”/填满背包

  • 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

  • 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

  • 上面的问题非常经典,类似的还有正整数拆分的问题(也可以用普通型生成函数来解决)等。

  • 其实这可以看成一种背包问题,只不过,此时我们并不考虑这些物品的价值,我们在乎这些体积能否填满这个这个数(填满背包),在乎这些物品能够通过几种方式来填到这个体积。

  • 求方案数:传送门

int climbStairs(int n){
    int *f = (int *)calloc(50, sizeof(int));
    f[0] = 1;
    f[1] = 1;
    for (int i = 2; i <= n; i++) {
        f[i] = f[i - 1] + f[i - 2];
    }
    int ans = f[n];
    free(f);
    return ans;
}

  • 我们考虑当前体积可以由那些体积加上一个物品转移而来,这里只有两个物品,1和2。

  • 填满背包考虑的是一个数能否被其他的数给组合出来。

  • 我们不需要考虑具体的方法数,我们只需要知道能否凑出某个数。(注意这点,这是bitset优化的基础,)

  • 给定n种不同的物品,背包容量为V,求把背包填满的最大价值,如果无法填满输出-1

  • 这是一种常见的问法,找不到板子题,就讲一下思路。

  • 初始化背包容量为负无穷,然后f[0]=0,这个空的状态,是其他万千状态的源泉,再这个基础上,进行完全相同的01背包或者完全背包,最后检查一下f[V]是不是大于0,是则输出,不是则输出-1。

  • 416. 分割等和子集 - 力扣(LeetCode)

  • 分割成两个相等的子集只需要把全集的一半作为背包的容量,进行填满背包操作就行了。


  • 两个问题是类似的,一个是求方案数,一个是是否存在。同样以f[0]为源头,开枝散叶,依据体积作为转移量,蔓生出一切状态。

背包求具体方案(从背包里取出)

  • 如果说我们要求出抵达某状态的具体转移方案,我们只需要记录两个背包的状态是如何转移过来的。
  • 我们再装背包的时候,是一个一个地尝试放入,使用了一些松弛的策略,经过复杂的状态变化得到最终的背包,而具体方案就比较简单,我们可以从背包里取出物品,看看是否能从这个状态回滚到上一个状态即可,因为这些物品取出的先后并不重要,我们只考虑是否能回滚,一个状态可能有多种回滚的方法,对于最后一个状态,可能有多个上一个状态转移到这个状态。
  • 如果背包里有三个物品,大中小,我们可以先去出大的,也可以先取出中等的,也可以先取出小的,这都是可以的,因为取完之后,这些状态的前驱都是存在的,我们可以一直取出某个物品来回滚到最初的状态。
  • 背包九讲 之 01背包问题求具体方案_yam bean的博客-CSDN博客

花招

bitset优化

  • 前面说了,bitset优化是不考虑方案数,只考虑能否达到的情况,特别是在填满背包中。
  • bitset相关:
    • 声明bitset bt或 bitset bt(“10010”) 导入字符串 或者 导入无符号数,位数不足补前导零。
    • bitset类型支持位运算,支持下标运算
    • 位运算时间复杂度少32倍
    //初始可抵达的容量为0
    bitset<V> bt(1);//00000000001->f[0] = 1
    for (int i = 0; i < n; i++) {
        int v;
        cin >> v;
        bt |= bt << v;
    }

根号分治(限制和背包)

  • 物品数目未知的情况下,例如考虑一种正整数拆分,如果说每种物品的大小均不相同,那么这些物品的总数不超过 n \sqrt{n} n
  • 等差数列求和可以知道。
  • 1 + 2 + 3 + 4 + 5… = n
  • 最多不超过 n \sqrt{n} n

二进制优化(多重背包)

  • 如果说01背包有许多元素的值相同那么就可以称为多重背包。
  • 例如n个元素和为n,的背包,如果是普通01背包,我们需要 O ( n 2 ) O(n^2) O(n2),如果每个元素都相同,通过二进制打包我们可以优化到 O ( n log ⁡ n ) O(n\log{n}) O(nlogn)
  • 二进制优化的方法是,将若干相同大小的物品,拆解成2的幂,多余的单独成组。
  • 例如10 = 1 + 2 + 4 + 3
  • 为什么可以这样分呢?
    • 首先这些数和原先的数的可组合的范围是一样的(原来10个物品在最终答案的背包内的状态数目范围是0~10,这些2的,幂可以组合到所有 2的最大幂 * 2 - 1的所有数,二进制形式可知,如果大于这个数小于原数,此时,我们需要从原数中减去此时的数,例如 8 我们只需凑出 2 ,取2以外所有的小组即可。)
    • 这样分会减小方法数。但是不改变能否抵达的真假性。例如打包成上述之后,4的合成方法只有3+1和4和原本可以是 1 + 1 + 1 + 1, 2 + 2, 2 + 1 + 1,3 + 1, 4。但是由于可组合的性不变,打包之后仍然能够抵达这个状态。

一道花招题

  • ICPC江西省赛H题

  • Problem - H - Codeforces

  • Tutorial说得可能有点模糊,稍微解释一下,就是当前最大值,到下一个更大值出现前都是属于同一组的,新的最大值以及后续管辖的较小值也是属于同一组的,不过可能是本组也可能是对面组,先划分成组,对这些元素进行背包即可,看看能否平分就行。

  • 这是限制和的背包,考虑两个极端,大量重复是 O ( n log ⁡ n ) O(n\log{n}) O(nlogn),均不重复是 O ( n n ) O(n\sqrt{n}) O(nn ),由于bitset优化所以最坏复杂度是 O ( n n / w ) O(n\sqrt{n}/w) O(nn /w)

  • #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 5e5 + 5;
    bitset<N> bt;
    void solve() {
        int n;
        cin >> n;
        vector<int> a(n);
        for (int i = 0; i < n; i++) cin >> a[i];
        
        int p = 0, mx = a[0];
        vector<int> items;
        int cnt = 1;
        for (int i = 1; i < n; i++) {
            if (a[i] > mx) {
                mx = a[i];
                items.push_back(i - p);
                p = i;
            }
        }
        items.push_back(n - p);
    
        bt.reset();
        map<int, int> mp;
        for (auto x : items) {
            mp[x]++;
        }
        
        vector<int> pkg;
        for (auto i : mp) {
            int cnt = i.second;
            int val = i.first;
            int now = 1;
            while (cnt >= now) {
                pkg.push_back(now * val);
                cnt -= now;
                now *= 2;
            }
            if (cnt) pkg.push_back(cnt * val);
        }
    
        bt[0] = 1;
        for (auto x : pkg) {
            bt |= bt << x;
        }
    
        cout << (bt[n / 2] ? "Yes\n" : "No\n");
    }
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0);
        int T = 1;
        cin >> T;
        while (T--) {
            solve();
        }
        return 0;
    }
    

其他背包

还有什么树形背包,依赖背包,这些问题,这些还是给更厉害的大佬来讲吧。

尾篇

背包问题还有很多,背包问题看似简单,其实蕴含着很多dp的本质,弄透背包问题对dp思想也是很大的提升。可以说背包是一个高度抽象的概念,万事万物皆可背包。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值