Non-Local Low-Rank Normal Filtering for Mesh Denoising

这是在 Computer Graphics Forum 2018上的一篇文章

Li X Z, Zhu L, Fu C W, Heng P A. Non-local low-rank normal filtering for mesh denoising[J]. Computer Graphics Forum, 2018, 37(7): 155-166

这篇文章主要讲了一种非局部的低阶法向滤波去噪方法,其中用到了引导网格。

该方法分为三个部分:

一、用本文提出的G-NPC探测器找出与当前点邻域最为相似的点邻域。

     首先,对噪声网格M上的每一个点v_{i},,定义集合N_{k},其中的点的局部邻域与v_{i},的局部邻域相似。为了确定两个顶点是否相似,最基础的想法是提取出顶点的局部邻域并计算两者的特征差异。由于网格M包含噪声,所以构造一个好的局部检测算子有些困难。协方差矩阵在图像处理中取得了很好的效果。受其启发,定义一个法向面片协方差(NPC)探测器来描述给定点v_{i}的局部特征。在数学中,v_{i}的NPC是一个3*3的矩阵:

                                                                              C(v_{i})=\frac{1}{N_{p}}\sum_{l=1}^{N_{p}}(n_{l}-\bar{n_{i}})(n_{l}-\bar{n_{i}})^{T},                                                        (1)
其中,n_{l}是顶点v_{i}邻域集NP(v_{i})的第l个元素。\bar{n}_{_{i}}NP(v_{i})中顶点向量的平均向量。图中解释了协方差矩阵的具体由来。

        计算两个协方差矩阵的距离并不简单。因为协方差矩阵是黎曼流形,我们不能直接用欧式距离度量。(参考KARACAN L., ERDEM E., ERDEM A.: Structure-preserving imagesmoothingviaregioncovariances. ACMTrans.onGraphics(SIGGRAPH Asia) 32, 6 (2013), 176:1–11.), 定义v_{i}v_{j}的NPC的距离为:

d_{NPC}的值越小,邻域NP(v_{i})NP(v_{j})的相似度越大。

     为了进一步提高相似顶点选取的准确性,利用预处理过的网格\bar{M}作为引导网格计算引导法向协方差(G-NPC)距离:

其中,d_{G}(v_{i},v_{j})=d_{NPC}(\bar{v}_{i}, \bar{v_{j}}}),\bar{v}_{i},\bar{v_{j}}是引导网格\bar{M}中的顶点。引导网格\bar{M}是由双边法向滤波产生的。(ZHENG Y., FU H., AU O. K.-C., TAI C.-L.: Bilateralnormal filtering for mesh denoising. IEEE Trans. Vis. & Comp. Graphics 17, 10 (2011), 1521–1530. 1, 2, 3, 4, 8, 10 )由于引导网格中有些信息已经丢失,所以并没有只用引导网格求矩阵的相似性。本文并没有在全网格中寻找相似点,而是在顶点的N_{r}环邻域中搜索。在这里,经验式的设定N_{p}=50,N_{r}=8.为了更好的利用双边法向滤波获取引导网格,设置了迭代次数为10。\sigma _{s}=\sigma _{m},\sigma _{m}的值后面会讨论到。

二、用低阶恢复模型对顶点法向做滤波

    现在,我们假设相似顶点已经用上述G-NPC方法找到。令N_{k}=\left \{ v_{ref}, v_{1}, v_{2}, ..., v_{N_{k-1}} \right \}, 即N_{k}中包含与v_{ref}最相似的点。现在计算法向域面片组(NPG)矩阵\Omega _{M}来处理顶点邻域顶点向量,包括NP(v_{ref}),..., NP(v_{v_{N_{k-1}}})

1.包装\Omega _{M}中的顶点向量

如上图所示,\Omega _{M}中每一列是每个相似点局部邻域顶点的法向,一共有han位置,得到去噪后网格N_{k}个相似点,所以共有N_{k}列,每组局部邻域点包含N_{p}个顶点,所以共有3 * N_{p}行。

       现在对\Omega _{M}中每个顶点的邻域中顶点进行重新排列。先将v_{ref}包装,再对后面N_{p-1}个点保障。这里提出了三种方法:

       (1)利用NPC矩阵,使用基于环的NPC顺序方案。首先,定义一个起始点,这个点的NPC矩阵中所有元素的绝对值之和是最大的。这样,我们确定了一个几何结构较为明显的顶点作为起始点。然后,在该点,以v_{ref}为中心,逆时针旋转排序。之后N_{k-1}个相似顶点以同样地方式排列。

        (2)使用随机排序方式。对N_{k}个相似顶点,每个顶点中的邻域顶点都使用随机排序。

        (3)对当前顶点v_{ref}使用方法(1),对其余的N_{k-1}个顶点使用方法(2)。

实验中,方法(1)中NPG结果较好。至此,\Omega _{M}中的顶点向量已经被包装为NPG矩阵。

2.计算低阶面片恢复模型

        令\Omega _{M}\Omega _{D}分别为同一个当前顶点v_{ref}的关于输入网格和去噪后网格的NPG矩阵。

\Omega _{D}由于没有噪声,其中相似点较多,所以应该是低阶的。\Omega _{M}由于具有噪声阶数较大。这一观察启发我们应该将网格去噪转化为

\Omega _{M}上的低阶恢复问题。由噪声模型的矩阵\Omega _{M}到无噪声模型的矩阵\Omega _{D}的低阶恢复,最小化下述优化问题:

其中,\mu>0是一个权值,本文所有实验中设置其为1。rank(\Omega _{D})表示\Omega _{D}的秩,F表示Frobenius范数。

      秩最小化的求解时很困难的。这里,构造截断\gamma范数\left \| . \right \|_{tg}:

这里\gamma取正值。\lambda是矩阵\Omega _{D}的最小奇异值的个数,\sigma _{i}(\Omega _{D})是矩阵\Omega _{D}的奇异值。一般来说,大的奇异值比小的奇异值重要,因为它们代表了组成元素的能量的大小,这也通常和输入网格的特征有关。这里的\gamma范数的作用有:(i)使大的奇异值和矩阵的秩较比核范数更相近。(ii)忽略很小的特征值,这些特征值通常和噪声有关,在我们的低阶恢复中有效的避免了噪声干扰。因此我们的\gamma范数可以更好地保持特征。一般设置\gamma=0.01\lambda =10

      综上所述,我们的\Omega _{D}低阶网格恢复模型为:

注意,在求得最优解后,\Omega _{D}中的每个法向都进一步被规范化为单位向量。

三、求最优解

         在求解中,我们的主要想法是将原始的目标最小化问题转换为解决几个子问题,这几个封闭子问题的解较容易求得。详细的说,我们首先把上式第二项 (i)用一个不相等的式子代替  (ii)将该式子应用于近似\gamma范数,得到下式中前两项。

其中I\lambda \times \lambda单位矩阵。m和n 是\Omega _{D}的维数。,然后我们将上述公式分为两步迭代求解,迭代次数为T.

STEP 1.

 

 

 

。。。。。未完待续。

 

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 我可以尝试给出一个简要的描述:“基于块特征分组和非局部滤波的图像去噪算法”是一种新颖的图像去噪算法,它将图像分成大小相等的块,并将每个块进行特征聚类以提取局部特征,然后使用非局部滤波来滤除噪声,最后重建图像,从而获得更清晰的图像。 ### 回答2: 《基于分块特征分组和非局部滤波的新型图像去噪算法》是一种图像去噪的算法。下面是复现该算法的步骤: 1. 数据准备:选择一幅待去噪的图像作为输入,并确定目标去噪程度。 2. 图像预处理:将输入图像进行灰度化处理,将彩色图像转换为灰度图像。 3. 分块特征提取:将灰度图像分为多个大小相等的非重叠分块,并从每个分块中提取特征。这些特征可以包括局部图像均值、方差、梯度幅值等。 4. 特征分组:根据特征相似性对所有分块进行分组。可以使用一些聚类算法,如K均值聚类或层次聚类。 5. 特征块选择:选择每个分组中的代表性特征块。可以选择均值最大、方差最小或梯度幅值最大的特征块作为代表。 6. 非局部滤波:对于每个分组,将代表特征块与所有其他分块进行非局部滤波。非局部滤波使用其他分块对代表特征块进行加权平均,将不同分块的信息融合在一起。 7. 滤波结果的生成:通过对每个分组中的所有分块进行非局部滤波,生成最终的滤波结果。 8. 重建图像:将每个分块的滤波结果合并为最后的图像。 9. 性能评估:使用一些评估指标,如峰值信噪比(PSNR)或结构相似性指标(SSIM),来评估复现算法的去噪效果。 通过以上步骤,可以复现《基于分块特征分组和非局部滤波的新型图像去噪算法》。由于算法细节可能有所差异,可以根据原文提供的详细描述及算法公式进行调整和优化。 ### 回答3: “基于分块特征分组和非局部滤波的一种新型图像去噪算法”使用300个字无法详细描述算法的各个步骤和原理,但我可以用简单的语言给您一个大致的理解。 该算法主要分为两个步骤:分块特征分组和非局部滤波。 在分块特征分组步骤中,图像被分割成许多重叠的块。然后,对于每个块,提取出其特征向量,并将相似的特征向量分为一组。这样做的目的是为了保留图像中的结构信息,并为后续的非局部滤波提供更好的基础。 在非局部滤波步骤中,对于每个块,通过寻找与当前块特征最为相似的一组块,来获得更准确的噪声估计值。然后,根据这些估计值,使用加权平均的方式对每个像素进行去噪处理。 该算法的创新点在于引入了分块特征分组和非局部滤波的组合。通过特征分组,可以更好地保留图像的结构信息,并更准确地估计噪声。而非局部滤波则利用了相似块之间的统计信息,以获得更好的去噪效果。 需要注意的是,该算法的具体实现细节可能会因发表论文的版本以及研究人员的实际实现方式而有所不同。如果您对该算法有进一步的了解或需要具体的实现代码,请参考原论文或相关的开源代码实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值