前言:
🌟🌟Hello家人们,这期讲解数据结构关于树的基础知识,希望你能帮到屏幕前的你。
🌈上期博客在这里:http://t.csdnimg.cn/jnP5G
🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客
目录
那么咱们开始吧 ~~~🎬🎬🎬
📚️1.树
🎥 1.1树型结构概念
🎥 1.2特点
1.有一个特殊的结点,称为根结点,根结点没有前驱结点2.除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继3.树是递归定义的。
💡💡总结来说:树就是递归定义的,并且每个节点只有一个前驱,和非零或者零个后继。
如下图:
注意:
1.子树是不相交的;
2.除根节点以外,其他每个节点有且只有一个父节点;
3.有N个节点就有N-1条边;
🎥 1.3名称概念
小编就用上图来解释说明:
1.结点的度 :一个结点含有子树的个数称为该结点的度;如上图: A 的度为 62.树的度 :一棵树中,所有结点度的最大值称为树的度;如上图:树的度为 63.叶子结点或终端结点 :度为 0 的结点称为叶结点;如上图: B 、 C 、 H 、 I... 等节点为叶结点4.双亲结点或父结点 :若一个结点含有子结点,则这个结点称为其子结点的父结点;如上图: A 是 B 的父结点5.孩子结点或子结点 :一个结点含有的子树的根结点称为该结点的子结点;如上图: B 是 A 的孩子结点6.根结点 :一棵树中,没有双亲结点的结点;如上图: A7.结点的层次 :从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推8.树的高度或深度 :树中结点的最大层次;如上图:树的高度为 4
兄弟结点 :具有相同父结点的结点互称为兄弟结点;如上图: B 、 C 是兄弟结点堂兄弟结点 :双亲在同一层的结点互为堂兄弟;如上图: H 、 I 互为兄弟结点结点的祖先 :从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先子孙 :以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是 A 的子孙森林 :由 m ( m>=0 )棵互不相交的树组成的集合称为森林
🎥 1.4树的应用
文件系统管理(目录和文件)
是不是非常像一棵树呢?😊😊😊
📚️2.二叉树(重点)
🎥2.1概念
一棵二叉树是结点的有限集合,该集合:
1.空节点;
2.或者由一个根节点链接两个别称为左子树,和右子树的二叉树构成
如下图:
💡💡注意:二叉树任意一个节点的度都不大于二,并且二叉树有左右之分,所以二叉树是有序的
以下的情况都为二叉树:
🎥2.2两种特殊的二叉树
🌟🌟满儿二叉树:一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。
🌟🌟完全二叉树:一棵二叉树,从左到右,依次排满(不用达到最大值),则这棵树就是完全二叉树。
如下图:
注意:满二叉树是特殊的完全二叉树。
🎥2.3二叉树的性质
1. 若规定 根结点的层数为 1 ,则一棵 非空二叉树的第 i 层上最多有2^(i-1) (i>0) 个结点2. 若规定只有 根结点的二叉树的深度为 1 ,则 深度为 K 的二叉树的最大结点数是2^k-1 (k>=0)3. 对任何一棵二叉树 , 如果其 叶结点个数为 n0, 度为 2 的非叶结点个数为 n2, 则有 n0 = n2 + 14. 具有 n个结点的完全二叉树的深度k为 ⌈log2(n+1)⌉ 上取整5. 对于具有 n 个结点的完全二叉树 ,如果按照 从上至下从左至右的顺序对所有节点从 0 开始编号 ,则对于 序号为 i 的结点有 :若i>0 , 双亲序号: (i-1)/2 ; i=0 , i 为根结点编号 ,无双亲结点若 2i+1<n ,左孩子序号: 2i+1 ,否则无左孩子若 2i+2<n ,右孩子序号: 2i+2 ,否则无右孩子
🎥2.4.二叉树存储和遍历
💡💡 二叉树的存储结构分为:顺序存储结构和类似于链表的链式存储结构。
🔥🔥遍历(重点)
小编这期只说明理论上的如何遍历,编程实现在下一期哦~~~~
~~~前序遍历:
NLR:前序遍历(访问根节点->访问左子树->访问右子树)
💡💡描述:在前序遍历二叉树时,先打印每个子树的根节点,然后打印左节点,如果左节点下面还有子树,那么左节点就是这棵树的根结点,进行打印,直到最后一个节点后为空,就打印最后一个节点的右树,再返回打印上一个结点的右数,不断递归。
如上图:A为根结点,打印后,再往A的左子树遍历到B,打印B后,B又是一个子树的根结点,所以在往左子树遍历到D,此时D又为一个根节点,打印D;再往D的左子树遍历,为空那么开始遍历D的右树,为空然后递归到B,遍历B的右树.......按照此递归逻辑进行前序遍历,最终结果为:A B D C E F。
~~~中序遍历:
LNR:中序遍历(访问左子树->访问根节点->访问右子树)
💡💡描述:若根结点存在则先遍历左节点,左节点如果是有一个子树的根结点,又递归,直到一个左结点的左子树为空,开始返回,打印每个子树的根结点,在递归右子树,如果为空就返回,如果不为空就继续递归这个节点左子树,不断递归返回。
如图:从A进入,递归A的左结点B,发现B也存在左节点,再次进行递归,直到D没有左子树然后打印根结点,也就是D本身,然后递归D的右,没有就返回,B的左子树遍历完了,打印B本身,然后递归B的右子数,为空就返回,A的左子树递归完了,就打印A这个根结点,再递归右子树........按此逻辑进行中序遍历,最终结果为:D B A E C F。
~~~后序遍历:
LRN:后序遍历(访问左子树->访问右子树->访问根节点)
💡💡描述:若根结点存在左子树和右子树,先递归左子树,直到一个节点的左子树为空后,在递归这个结点的右子数,如果为空就返回值根结点进行打印,反之继续递归这棵树的左子树,不断递归。
如上图:这里先递归到D结点,然后发现D无左右子树,就打印D本身,然后递归B的右子数,发现为空,就返回到B根结点,在递归A根结点的右子树.....按此逻辑进行后序遍历。最终结果:D B E F C A
3.📚️总结
💬💬小编这期只总结了关于树的基础理论知识,并不涉及到关于树的相关代码,小编将详细讲述关于二叉树的的遍历以及相关代码实现。
🌅🌅🌅还是那句话,多练!哈哈哈~~~~最后希望与诸君共勉,共同进步!!!
💪💪💪以上就是本期内容了, 感兴趣的话,就关注小编吧。
下期预告:二叉树的遍历🌟🌟
😊😊 期待你的关注~~~
————————————————