自定义端口流量监控并结合到prometheus+grafana

一、获取端口流量

要自定义端口流量监控到普罗再到grafana,第一步就是需要获取到各个端口的流量,网上有很多工具可以获取到(比如iftop,nethogs等等),但都需要工具一直在后台运行,并且这些工具输出的数据不方便提取出来,所以我使用的是iptables统计端口流量,方法如下:

1.添加端口监控

#流量又分为上行和下行流量,所以需要分别在INPUT表和OUTPUT表添加端口监控,后续只针对INPUT表演示,OUTPUT表同理的
#根据自己的需求添加对应的端口
iptables -A INPUT -p tcp --dport 3306
iptables -A OUTPUT -p tcp --sport 3306
iptables -A INPUT -p tcp --dport 22
iptables -A OUTPUT -p tcp --sport 22

查看效果

iptables -nL INPUT -v -x
iptables -nL OUTPUT -v -x

如下图,输出了各个端口的下行流量,单位是byte

2.提取流量

代码如下,就不细说了,

for i in $(iptables -nL INPUT -v -x -w 5 | sed -nr '/pkts|INPUT/!p' | awk '{print $NF}')
do
T=$(printf "%.2f" $(echo "scale=3;$(iptables -nL INPUT -v -x -w 5 | sed -n "/$i/p" | awk 'END{print $2}') / 1000000"  | bc))
echo "node_port_input_traffic{port=\"$i\"}" $T
A=$(printf "%.2f" $(echo "$A+$T"  | bc))
done
echo "node_port_input_traffic{port=\"all\"}" $A

以上提取出了各个端口的下行流量及总流量,并将单位换算成MB。

二、自定义node-exporter监控项

1.打印监控数据到prom文件

上面提取出了各个端口的流量使用量,还需要通过node-exporter将数据传递到普罗,所以需要先学会如何自定义node-exporter的监控项。

想要详细了解可以看:

Node Exporter textfile 自定义指标收集器https://blog.csdn.net/qq_34556414/article/details/123478015?spm=1001.2014.3001.5506也可以直接使用一下脚本,得到node-exporter想要的 .prom文件

脚本名称路径为:/opt/node-exporter/input_traffic.sh

#!/bin/bash
source /etc/profile
echo "# HELP node_port_input_traffic some ports use traffic"
echo "# TYPE node_port_input_traffic gauge"
A=0
for i in $(iptables -nL INPUT -v -x -w 5 | sed -nr '/pkts|INPUT/!p' | awk '{print $NF}')
do
T=$(printf "%.2f" $(echo "scale=3;$(iptables -nL INPUT -v -x -w 5 | sed -n "/$i/p" | awk 'END{print $2}') / 1000000"  | bc))
echo "node_port_input_traffic{port=\"$i\"}" $T
A=$(printf "%.2f" $(echo "$A+$T"  | bc))
done
echo "node_port_input_traffic{port=\"all\"}" $A

将该脚本做成计划任务,我这里设置成每隔一分钟统计一次数据,并输出到相应目录的

计划任务如下:

* * * * * /usr/bin/bash /opt/node-exporter/input_traffic.sh > /opt/node-exporter/input_traffic.prom

讲监控指标及数据打印到/opt/node-exporter/input_traffic.prom

2.容器部署node-exporter

部署如下:

docker run -d --name node-exporter -p 9100:9100 -v /opt/node-exporter:/opt/node-exporter --restart always -e TZ=Asia/Shanghai prom/node-exporter --collector.textfile.directory  /opt/node-exporter

以上部署了node-exporter,并指定了监控指标目录

3.验证结果

访问node-exporter web界面可以看到自定义输出的监控指标

三、自定义grafana面板

执行这一步之前,需要先部署grafana和prometheus,网上也有很多部署教程,就也不细说了。

1.导入面板

登录grafana,导入面板,也可以直接自定义面板。我这里导入的是ID为11206的面板

 

2.修改面板

导入的面板并不能直接使用,需要修改成上面自定义的监控指标,还有指标单位。

 

同理,将其余三个面板的指标和单位修改了,效果如下:

 

至此,自定义流量监控指标就完成了。

 

### 配置 PrometheusGrafana 实现 Flink 的监控 #### 安装与配置 Prometheus 为了实现对 Flink 的有效监控Prometheus 是核心组件之一。由于 Flink on YARN 作业的动态特性,直接由 Prometheus 抓取数据存在挑战。因此引入了 PushGateway 中间件来解决这一问题。 - **安装 Prometheus** 下载解压官方提供的二进制文件即可完成安装过程[^1]。 - **配置 Prometheus** 编辑 `prometheus.yml` 文件,在 scrape_configs 节点下添加针对 PushGateway 数据源的抓取规则: ```yaml scrape_configs: - job_name: 'pushgateway' static_configs: - targets: ['localhost:9091'] ``` 此设置使得 Prometheus 可以定期从指定地址获取推送过来的数据。 #### 使用 PushGateway 收集临时性度量指标 对于像 Flink 这样的批处理或流处理框架来说,其任务可能具有短暂生命周期的特点。此时可以通过修改 Flink 应用程序代码,使其能够向 PushGateway 发送自定义 Metrics;或者利用 Flink 提供的内置 Metric Reporter 功能指向 PushGateway 地址。 当应用程序结束运行之后,这些短期存在的 Metrics 不会立即消失而是继续存在于 PushGateway 上等待被采集[^3]。 #### 安装与配置 Grafana Grafana 主要用于可视化展示收集到的各种性能指标信息。 - **下载与启动 Grafana** 访问镜像站点加速下载速度,按照常规方式启动服务进程[^2]: ```bash nohup ./bin/grafana-server web & ``` 默认情况下监听于本地 3000 端口上提供 Web UI 接入支持,默认用户名密码均为 admin。 - **连接至 Prometheus 数据源** 登录后进入 Data Sources 页面新增一个名为 "Prometheus" 类型的选择项,填入之前部署好的 Prometheus Server URL 即可建立关联关系。 - **创建仪表板** 导入预先设计好适用于 Flink 监控场景下的模板化面板布局方案(例如 ID 为 11049),这样就能快速获得一组合理的视图组合来进行日常运维管理操作了。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值