统计学习方法——朴素贝叶斯法原理

机器学习 专栏收录该内容
9 篇文章 0 订阅

1. 朴素贝叶斯

在这里插入图片描述
贝叶斯是因为使用了贝叶斯定理,朴素是因为特征条件对立性的假设。朴素贝叶斯因此得名。

2. 模型

2.1 联合概率分布

在这里插入图片描述

2.2 学习联合概率分布的目的

朴素贝叶斯法通过训练数据集学习联合概率分布P(X,Y)。学习联合概率分布P(X,Y)分布的目的,是为了得到先验概率和条件概率分布(贝叶斯定理所需要的条件)
在这里插入图片描述

2.3 条件独立性假设

在这里插入图片描述
条件概率分布和先验概率分布我们都可以利用训练数据集将其估计出来。

3. 朴素贝叶斯分类

3.1 贝叶斯定理

在这里插入图片描述

3.2 构建朴素贝叶斯分类器

在这里插入图片描述
在这里插入图片描述
因此,朴素贝叶斯法,就是利用训练数据集得到先验概率和条件概率,进而求得在输入为x的条件下的后验概率,根据后验概率最大准则,选择使得后验概率最大的类,最为输入实例的类输出。

学习过程:

朴素贝叶斯法的参数估计——极大似然估计及其Python实现

朴素贝叶斯法的参数估计——贝叶斯估计及其Python实现

3.4 后验概率最大和经验损失最小的关系

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值