- 博客(14)
- 收藏
- 关注
原创 基于谱方法的图卷积(卷积,图卷积,切比雪夫图卷积)
卷积什么是卷积,对于两个函数f,hf,hf,h,卷积就是指对这两个函数进行加权平移叠加。连续域下卷积如下所示:y(t)=∫−∞∞f(t′)h(t−t′) d t′y(t)=\int_{-\infty}^{\infty}f(t')h(t-t')\ d\ t'y(t)=∫−∞∞f(t′)h(t−t′) d&...
2019-09-09 16:30:08
8455
原创 图分割
图分割一个人graph G=(V,E)G=(V, E)G=(V,E), 其中VVV是所有顶点的集合,EEE是所有边的集合,我们可以通过图分割(graph partitioning)将graph分割成两个互不重叠的子图A,B(A∩B=∅,A∪B=V)A, B(A\cap B=\emptyset, A\cup B=V)A,B(A∩B=∅,A∪B=V)衡量这两个子图之间的非相似度的方法是计算被去除的...
2019-09-07 16:30:19
619
原创 阿里妈妈IJCAI_2018赛后总结
赛题背景关于比赛的介绍,这里就不做赘述了 https://tianchi.aliyun.com/competition/introduction.htm?raceId=231647成绩不够好的原因(一百多名,总人数5000多人)首先也是最重要的是“弱”, 会的东西太少, 比赛没有用到什么特别特殊的方法, 稍微特殊一点的只是lgb+lr复赛方向有问题, 没有在提取特征上花费足够多的...
2018-05-15 20:31:01
1511
原创 a newbie in Porto Seguro’s Safe Driver Prediction(solo参赛 TOP 5%)
kaggle是一个国际性质的机器学习竞赛平台,跟国内很多出名的别的平台比,kaggle上参与者之间的交流多很多,可以很大程度上提高参赛人员水平。而且kaggle本身难度也比国内的很多比赛要大很多。Porto Seguro’s Safe Driver Prediction 这个比赛是一家巴西的公司发起的预测购买汽车保险后一年内是否会发生理赔。
2017-11-30 21:22:43
2531
原创 统计学习方法 笔记与总结 决策树
简介 决策树是一种解决分类和回归的的模型。决策树由节点和有向边组成。节点分为两种,内部节点和叶节点。每个叶节点都代表一个特征,根据每个输入的该特征的值的不同,该输入会被分向不同的有向边,指向下一级节点,直到叶节点为止,每一个叶节点都是一个输出。回归问题中每一个叶节点都是一个值,分类问题中每一个叶节点都是一个类。 决策树在学习的时候每次会选择当下最好的特征将训练数据集分割成几个子集,一直到每个
2017-10-13 14:52:52
380
原创 统计学习方法笔记-朴素贝叶斯
先验概率与后验概率 在说朴素贝叶斯之前,这里先提出两个概念先验概率和后验概率。先验概率基于之前历史数据或者主观经验得出的某一随机事件发生的概率P(A)P(A)。而后验概率呢?这个时候如果发生了某个事件B,再考虑A发生的概率P(A|B)P(A|B)就是后验概率。(个人理解如有错误,欢迎大神指正)朴素贝叶斯的原理 朴素贝叶斯是对于每一个输入x,都求出其对应的后验概率最大的输出y。关于分类问题,朴素贝
2017-09-17 21:30:45
408
原创 统计学习方法笔记-K近邻(k-NN)
K近邻算法 k近邻算法没有显示的学习过程。算法在预测的时候会根据输入实例到训练集中找出k个与输入实例最近的k个点。k个点中多数属于某个类,就将这个输入实例归为这个类,k为1的时候这个算法也称为最近邻算法。 整个过程表述如下: 假设训练集为: T={(x1,y1),(x2,y2),⋯,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots ,(x_N,y_N)\}
2017-09-16 17:24:55
287
原创 统计学习方法笔记-感知机
一,感知机介绍1.什么是感知机 感知机是一种线性的二分类模型,输入为数据的特征向量,而输出为数据的类型(+1或者-1)。2.感知机模型f(x)=sign(w⋅x+b)f(x)=sign(w \cdot x+b)w为权重w为权重b为权重b为权重 f(x)={+1,−1,x≥0x<0f(x) = \begin{cases}+1, & x \ge 0 \\-1, & x \lt 0\e
2017-09-14 15:29:19
387
原创 C++ 关于virtual
C++ 关于virtualvirtual的意义C++代码里经常可以看到一些基类里的一些函数被定义为virtual,它的意义是什么呢?如果一个基类里的函数被定义为虚函数,就代表这个函数,在继承的时候希望派生类对其进行重写。 在书上看到了这些知识点之后,我做了这么一个测试,如下:#include <iostream>using namespace std;class MyClass{publ
2016-12-23 22:22:51
424
原创 六轴系统中陀螺仪输出的角速度的一些问题
六轴=三轴陀螺仪+三轴加速度计姿态角求解 在我们利用IMU求解运动姿态角时我们利用陀螺仪积分出角度,再利用加速度计来矫正滚转角与俯仰角(东北天坐标系下)。这样的话我们得到的X轴角度和Y轴角度就不会随着时间的增加而增加累计误差(陀螺仪的零点漂移很难完全矫正)。
2016-03-11 22:39:21
13774
原创 姿态解算中的欧垃角与四元数
关于欧垃角与四元数的转换在做运动物体姿态求解时,我碰到了一些问题,以此留些记录以方便同行或者以后的自己借鉴或者说是回顾。坐标系我们一般常用的坐标系是东北天坐标系,地理坐标系,以及刚体固连坐标系(也就是自身坐标系)。 东北天坐标系:这个坐标系描述的姿态角在欧垃角描述下的表示方式,即表示的欧垃角是 航向角->俯仰角->滚转角。滚转角和俯仰角的正方向满足右手定则,但是航向角不满足右手定则,航向角以北
2016-03-06 22:46:42
6885
原创 关于陀螺仪数据处理(得到姿态)的一些方法(1)
关于陀螺仪数据处理(得到姿态)的一些方法关于姿态描述欧拉角与四元数实际使用过程中的问题解决方法与代码实现我自己的问题姿态描述
2015-10-04 14:12:11
21104
5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人