欧拉函数因子和的神奇证明

首先特别鸣谢 ZXF 大佬天才的对应法设计,下文中所有提到的符号均表示正整数。

问题

φ ( n ) \varphi(n) φ(n) 表示不大于 n n n 且与 n n n 互质的正整数的个数(即欧拉函数),求证以下表达式对任意正整数 n n n 成立:

n = ∑ d ∣ n φ ( d ) (1) n=\sum_{d|n}\varphi(d)\tag1 n=dnφ(d)(1)

如果使用 ∗ * 表示迪利克雷卷积,则这一表达式被写作:

1 ∗ φ = id \bold{1}*\varphi=\text{id} 1φ=id

天才的对应法证明

首先我们定义一个集合 P P P

P n = { ( d , r ) : d ∣ n    且    r ≤ d    且    r 与 d 互质 } P_n = \{(d, r):d|n\;且\;r\leq d\;且\;r 与 d 互质\} Pn={(d,r):dnrdrd互质}

构造这个集合的初衷十分单纯且直觉,因为 ∣ P ∣ |P| P(即 P P P 中的元素个数)恰好满足:

∣ P ∣ = ∑ d ∣ n φ ( d ) |P|=\sum_{d|n}\varphi(d) P=dnφ(d)

所以只要我们能建立一个从集合 { 1 , 2 , ⋯   , n } \{1, 2, \cdots, n\} {1,2,,n} 到集合 P P P 的一一映射 f f f 就能证明表达式 ( 1 ) (1) (1)

好,那么我们现在直接给出这个映射:

f ( i ) = ( n gcd ( n , i ) , i gcd ( n , i ) ) f(i)=\left(\frac{n}{\text{gcd}(n, i)}, \frac{i}{\text{gcd}(n, i)}\right) f(i)=(gcd(n,i)n,gcd(n,i)i)

现在我们只需要证明 f f f 既是单射,又是满射。

证明 f 是单射

只需要证明,任意两个互不相同的元素,一定会被映射到不同的象上。根据惯例,我们可以去证这个东西的逆否命题,即, f ( a ) = f ( b ) ⇒ a = b f(a)=f(b) \Rightarrow a = b f(a)=f(b)a=b

f ( a ) f(a) f(a) 是一个有序对,值为 ( n gcd ( n , a ) , a gcd ( n , a ) ) \left(\frac{n}{\text{gcd}(n, a)}, \frac{a}{\text{gcd}(n, a)}\right) (gcd(n,a)n,gcd(n,a)a) f ( b ) f(b) f(b) 也是一个有序对,值为 ( n gcd ( n , b ) , b gcd ( n , b ) ) \left(\frac{n}{\text{gcd}(n, b)}, \frac{b}{\text{gcd}(n, b)}\right) (gcd(n,b)n,gcd(n,b)b)。两个有序对相等,就是说,有序对的两个分量分别对应相等,所以有:

{ n gcd ( n , a ) = n gcd ( n , b ) a gcd ( n , a ) = b gcd ( n , b ) (2) \left\{\begin{aligned} \frac{n}{\text{gcd}(n, a)}=\frac{n}{\text{gcd}(n, b)}\tag2\\ \frac{a}{\text{gcd}(n, a)}=\frac{b}{\text{gcd}(n, b)} \end{aligned}\right. gcd(n,a)n=gcd(n,b)ngcd(n,a)a=gcd(n,b)b(2)

根据表达式 ( 2 ) (2) (2) 的第一行我们可以得知 gcd ( n , a ) = gcd ( n , b ) \text{gcd}(n, a)=\text{gcd}(n, b) gcd(n,a)=gcd(n,b),不妨设 d = gcd ( n , a ) = gcd ( n , b ) d=\text{gcd}(n, a)=\text{gcd}(n, b) d=gcd(n,a)=gcd(n,b)。有了这个信息,我们再去看表达式 ( 2 ) (2) (2) 的第二行,则有 a ÷ d = b ÷ d a\div d=b\div d a÷d=b÷d,因此 a = b a=b a=b,单射得证。

证明 f 是满射

任取 ( a , b ) ∈ P (a, b)\in P (a,b)P 只需证明存在一个 i ∈ { 1 , 2 , ⋯   , n } i\in\{1, 2, \cdots, n\} i{1,2,,n} 使得 f ( i ) = ( a , b ) f(i)=(a, b) f(i)=(a,b) 即可。

我们断言, i = n a × b i = \frac{n}{a}\times b i=an×b 就是一个满足条件的 i i i,为了说明这个事情,我们只需要证明 f ( n a × b ) f(\frac{n}{a}\times b) f(an×b) 确实等于 ( a , b ) (a, b) (a,b)

f ( n a × b ) = ( n gcd ( n , n b a ) , n b a gcd ( n , n b a ) ) f(\frac{n}{a} \times b)=\left(\frac{n}{\text{gcd}(n, \frac{nb}{a})}, \frac{\frac{nb}{a}}{\text{gcd}(n, \frac{nb}{a})}\right) f(an×b)=(gcd(n,anb)n,gcd(n,anb)anb)

由于 ( a , b ) ∈ P (a, b) \in P (a,b)P 所以我们知道 a ∣ n a|n an a , b a, b a,b 互质(即 gcd ⁡ ( a , b ) = 1 \gcd(a, b)=1 gcd(a,b)=1)且 b ≤ a b \leq a ba,这是根据 P P P 的定义得到的,于是我们知道 n b a \frac{nb}{a} anb 确实是满足 1 ≤ n b a ≤ n 1\leq \frac{nb}{a} \leq n 1anbn 的整数。

由于 a a a n n n 的因子,所以我们可以把 n n n 写成 n a × a \frac{n}{a}\times a an×a,其中 n a \frac{n}{a} an亦为整数。观察 gcd ( n , n b a ) \text{gcd}(n, \frac{nb}{a}) gcd(n,anb)

gcd ( n , n a × b ) = gcd ( n a × a , n a × b ) = n a gcd ⁡ ( a , b ) = n a \text{gcd}\left(n, \frac{n}{a}\times b\right)=\text{gcd}\left(\frac{n}{a} \times a, \frac{n}{a} \times b\right)=\frac{n}{a}\gcd(a, b)=\frac{n}{a} gcd(n,an×b)=gcd(an×a,an×b)=angcd(a,b)=an

所以 n gcd ( n , n b a ) = n n / a = a \frac{n}{\text{gcd}(n, \frac{nb}{a})}=\frac{n}{n/a}=a gcd(n,anb)n=n/an=a n b a gcd ( n , n b a ) = n gcd ( n , n b a ) × b a = a × b a = b \frac{\frac{nb}{a}}{\text{gcd}(n, \frac{nb}{a})}=\frac{n}{\text{gcd}(n, \frac{nb}{a})}\times \frac{b}{a}=a\times \frac{b}{a}=b gcd(n,anb)anb=gcd(n,anb)n×ab=a×ab=b。于是 f ( n a × b ) = ( a , b ) f(\frac{n}{a}\times b)=(a, b) f(an×b)=(a,b),满射得证。

综上

由于我们证明了 f f f 既是单射又是满射,所以 f f f 是一一映射。又因为集合 P P P 与集合 { 1 , 2 , ⋯   , n } \{1, 2, \cdots, n\} {1,2,,n} 都是有限集,所以两个集合元素个数相等,因此等式 ( 1 ) (1) (1) 得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值