
群同态与群同构-抽象代数【密码学数学基础】
所以在群的意义上,如果不考虑子群关系,单独把 Z和 2Z 拿出来的时候,我们就认为它们是不可区分的,完全相同的两个群。如果我们把 2Z 中的 2 都看成 1,4 都看成 2,以此类推,将 2k都看成 k,那么两个群的运算规则是一模一样的。是数学中最重要的概念之一。设群(G,∗)和群(G′,⊗),如果函数 f : G→G′ 对于∀a,b∈G,都有:f(a∗b)=f(a)⊗f(b)那么f就是(G,∗)到(G′,⊗)的群同态。f:G→K,使得对于任意的 x,y∈G都满足 f(x)f(y)=f(xy),这两个群。
















