莫比乌斯反演基础

2017 CDQZ 联训 中向 HSZX 的大佬请教了一些关于莫反的知识,特此感谢!

本文仅介绍一些关于莫比乌斯反演的基础知识。

声明

本文中,若无特殊声明p1a1p2a2...Pkak表示一个数的质因数分解,i,prime(pi)aiN+

莫比乌斯函数

定义

莫比乌斯函数是在数论中一个很重要的积性函数,定义如下。

若正整数x可质因数分解为:

x=p1a1p2a2...Pkak

μ(x)={0:ai21:k0mod21:k1mod2

即当x1,且不存在平方因子时:

μ(x)=(1)k

当x存在平方因子时:

μ(x)=0

特殊地:

μ(1)=1

一些性质

此性质可用来判断一个数是否等于一。

d|nμ(d)=[n=1]

证明:

n=1时显然成立。

n1时,不妨令n=p1a1p2a2...Pkak,那么n的因子d=p1b1p2b2...Pkbk,0biai

bi2,μ(d)=0对答案没有贡献。

因此,对答案有贡献d一定满足bi0,1

枚举每一个有贡献的d,就相当于是从bi中选出若干个置为1,其他的置为0。

从k个位置中选出j个位置的方案数为Ckj,而一个由j个质因子组成的数d,有μ(d)=(1)j。所以,所有由j个质数组成的d对答案的贡献和为Ckj(1)j

因为 j{0,1,2,...,k},所以:

d|nμ(d)=j=0kCkj(1)j

根据二项式定理:

j=0kCkjxj=(x+1)k

所以:

d|nμ(d)=j=0kCkj(1)j=((1)+1)k=0

得证。

欧拉函数

定义

φ(x),xN+表示小于x且与x互质的数的个数。

特殊地

φ(1)=1

一些性质

积性函数の积性

gcd(a,b)=1φ(ab)=φ(a)φ(b)

证明很显然。

2018.3.16 填坑,后来我惊奇得发现这一点都不显然。。

gcd(n,m)=1, 考虑φ(nm)的物理意义。

1         2         3        ...  r       ...     m-1       m
m+1       m+2       m+3      ...  m+r     ...    2m-1      2m
2m+1     2m+2      2m+3      ... 2m+r     ...    3m-1      3m
.        .         .                             .         .
.        .         .                             .         .
.        .         .                             .         .
(n-1)m+1 (n-1)m+2  (n-1)m+3 ... (n-1)m+r  ...    nm-1      nm

φ(nm)的物理意义为上表中与nm互质的数的个数。

因为n和m互质,所以不难证明:一个数x与nm互质的充要条件为x与n互质且x与m互质。

证明:设P(x)为x的质因子集合。因为n和m互质,所以P(n)P(m)=ϕ, P(nm)=P(n)P(m)
gcd(x,n)=1P(x)P(n)=ϕ
gcd(x,m)=1P(x)P(m)=ϕ
P(n)P(m)=ϕ,P(x)(P(n)P(m))=ϕP(x)P(n)=ϕ,P(x)P(m)=ϕ
得证。

发现每一列元素与m的gcd都相同,考虑有哪些列是与m互质的。根据定义,这样的列有φ(m)列。

再考虑这些列中的每一列中与n互质的数的个数,因为每一横行的数在模n意义下同余。所以每一列有φ(n)个元素与n互质。综上,φ(nm)=φ(n)φ(m),及欧拉函数为积性函数。

补坑结束。


另外,当p为质数时:

φ(p)=p1

这更加显然。

另一个基本性质

x=p1a1p2a2...pkak,d=pi

φ(xd)=φ(x)d

证明:

首先t=piaiφ(t)={1:ai=0(pi1)piai1:ai>0,pi是质数。

考虑把一个数化成pi进制数,t一定能表示成一个1后面ai个0的形式。对于任意的一个小于t的数d与t互质,当且仅当把t化成pi进制后最后一位不为零。所以说d这个aipi进制数,除了最低位不能为0,有pi1种可能外,其它的位是什么都可以,各有pi种可能。因此上式成立。

这样的话就有:φ(pik+1)=φ(pik)pi,kN+

φ(xd)=φ((p1a1p2a2...pi1ai1pi+1ai+1...pkak)×piai+1)=φ(p1a1p2a2...pi1ai1pi+1ai+1...pkak)×φ(pi(ai)+1)=φ(p1a1p2a2...pi1ai1pi+1ai+1...pkak)×φ(piai)pi=φ(x)d

得证。

还有一个比较重要的性质:

d|nφ(d)=n

哪位大神能教我一下这个怎么证啊!留坑待补。

[2018.1.22] 在此补坑。前几天碰巧在学校遇到了樊神,向樊神请教了一番,樊神几句话就证出来了,真是佩服。

f(n)=d|nφ(d),显然有f(1)=1

对于一个质数pf(p)=φ(1)+φ(p)=1+(p1)=p,显然成立。

数学归纳一下,对于一个质数的若干次幂pk,若此性质已经对pk1成立:

f(pk)=t=0kφ(pt)=φ(pk)+t=0k1φ(pt)=φ(pk)+f(pk1)=(p1)pk1+pk1=pk

又因为该性质对k=1成立,所以该性质对任意正整数k成立。

对于一个数n,n与pk(p为素数)互质,那么这个数的所有因子一定能写成n的所有因子乘上p的若干次幂的形式。

若n已经满足f(n)=n的性质,

f(npk)=d|n(t=0kφ(dpt))

又因为n与pk互质,所以d与pk也一定互质,φ是积性函数,所以φ(dpt)=φ(d)φ(pt)

所以f(npk)=d|n(t=0kφ(dpt))=d|nφ(d)(t=0kφ(pt))=d|nφ(d)f(pk)=f(pk)d|nφ(d)=f(pk)f(n)=npk

对于任意的一个数都可以进行质因数分解,分解成n=1p1a1p2a2...Pkak的形式,因为1是成立的,质数两两互质,所以任意正整数n都满足f(n)=n

得证。

[2018.1.22] 填坑到此结束,后面的内容为之前所写。

利用这个性质可以有:

i=1ni=i=1nd|iφ(d)=d=1nφ(d)×nd

这里给出欧拉函数的暴力求法:

x=p1a1p2a2...pkakφ(x)=x(11p1)(11p2)...(11pk)

证明:

φ(x)=φ(p1a1p2a2...pkak)=φ(p1a1)φ(p2a2)...φ(pkak)=(p11)p1(a1)1(p21)p2(a2)1...(pk1)pk(ak)1=(11p1)p1a1(11p2)p2a2...(11pk)pkak=x(11p1)(11p2)...(11pk)

得证。

狄利克雷卷积

一种生成函数的运算,定义如下:

(f×g)(n)=d|nf(d)g(nd)

常见积性函数

单位函数:id(n)=n

元函数:e(n)=[n==1]

1函数:I(n)=1

约数个数:d(n)=d|n1

一些常见的性质

f为积性函数。

(f×e)(n)=d|nf(d)×e(nd)=d|nf(d)×[nd=1]=f(n)

即:

f×e=f

另外,狄利克雷卷积满足交换律和结合律。

φ×I=id

证明:

φ×I=d|nφ(d)I(nd)=d|nφ(d)=n

得证。

μ×I=e

证明:

(μ×I)(n)=d|nμ(d)I(nd)=d|nμ(d)=[n=1]=e(n)

莫比乌斯反演

内容

若:

F(n)=d|nf(n)

则:

f(n)=d|nμ(d)F(nd)

用狄利克雷卷积表述如下:

若:

F=f×1

则:

f=F×μ

从这个角度来讲,证明就很简单了:

F×μ=(f×1)×μ=f×(1×μ)=f×e=f

杜教筛原理

求积性函数前缀和:

S(n)=i=1nf(i)

当f的前缀和不好求的时候,考虑一个前缀和比较好求的g,求f×g的前缀和。

i=1n(f×g)(i)=i=1nd|ig(d)f(id)

枚举d,存在一个d|i,那么f(id)就要和g(d)相乘,而i可以为d,2d,3d,...,dnd,所以S(nd)g(d)相乘就是g(d)的贡献。

=d=1ng(d)i=1ndf(i)=d=1ng(d)S(nd)

所以:

i=1n(f×g)(i)=d=1ng(d)S(nd)=g(1)S(n)+i=2ng(i)S(ni)

所以:

S(n)=i=1n(f×g)(i)i=2ng(i)S(ni)g(1)

这样的话如果g(f×g)的前缀和都很好求,那么计算S(n)只需要S(n2),S(n3),..,S(nn)=S(1)。而又因为ni只有O(n)种取值,所以记忆化搜索一下会有奇效。

关于ni的取值问题的证明。

1in时,就算是结果两两各不相同,ni也只有n种取值。

n<in时,1ni<n,就算是取遍值域中的所有值,也只有n种取值。

因此ni的取值种数不超过2n种,即O(n)种。

得证。

用线性筛求出前n23的前缀和之后再递推,可以将O(n34)优化到O(n23)

阅读更多
版权声明:文章纯属版主手敲,请同学们尊重版主的知识产权。 https://blog.csdn.net/GGN_2015/article/details/78943252
个人分类: 算法导论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭