数据库索引

70 篇文章 0 订阅
60 篇文章 0 订阅
索引 是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。

索引

数据库 索引好比是一本书前面的目录,能加快数据库的查询速度。
索引是对数据库表中一个或多个列(例如,employee 表的姓氏 (lname) 列)的值进行排序的结构。如果想按特定职员的姓来查找他或她,则与在表中搜索所有的行相比,索引有助于更快地获取信息。
例如这样一个查询:select * from table1 where id=10000。如果没有 索引,必须遍历整个表,直到ID等于10000的这一行被找到为止;有了索引之后(必须是在ID这一列上建立的索引),在索引中查找,但索引是经过某种算法优化过的,查找次数要少的多的多。可见, 索引是用来定位的。
索引分为 聚簇索引非聚簇索引两种,聚簇索引 是按照数据存放的物理位置为顺序的,而非聚簇索引就不一样了;聚簇索引能提高多行检索的速度,而非聚簇索引对于单行的检索很快。

编辑本段索引的优缺点

概述

建立索引的目的是加快对表中记录的查找排序。
为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。

详述

创建 索引 可以大大提高系统的性能。
优点:
第一,通过创建唯一性 索引,可以保证数据库表中每一行数据的唯一性。
第二,可以大大加快数据的检索速度,这也是创建 索引的最主要的原因。
第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
第五,通过使用 索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

也许会有人要问:增加 索引有如此多的优点,为什么不对表中的每一个列创建一个 索引呢?
因为,增加 索引也有许多不利的方面。
缺点:
第一,创建 索引和维护 索引要耗费时间,这种时间随着数据量的增加而增加。
第二, 索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立 聚簇索引,那么需要的空间就会更大。
第三,当对表中的数据进行增加、删除和修改的时候, 索引也要动态的维护,这样就降低了数据的维护速度。

索引是建立在数据库表中的某些列的上面。在创建 索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。
什么情况下创建索引??一般来说,应该在这些列上创建 索引
1  在经常需要搜索的列上,可以加快搜索的速度;
2  在作为 主键的列上,强制该列的唯一性和组织表中数据的排列结构;
3  在经常用在连接的列上,这些列主要是一些 外键,可以加快连接的速度;
4   在经常需要根据范围进行搜索的列上创建 索引,因为索引已经排序,其指定的范围是连续的;
5   在经常需要排序的列上创建 索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;
 6   在经常使用在WHERE子句中的列上面创建 索引,加快条件的判断速度。
同样,对于有些列不应该创建 索引
什么情况下不宜创建索引??一般来说,不应该创建 索引的的这些列具有下列特点:
第一,对于那些在查询中很少使用或者参考的列不应该创建 索引。这是因为,既然这些列很少使用到,因此有 索引或者无索引,并不能提高查询速度。相反,由于增加了 索引,反而降低了系统的维护速度和增大了空间需求。
第二,对于那些只有很少数据值的列也不应该增加 索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中, 结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加 索引,并不能明显加快检索速度。
第三,对于那些定义为text, image和 bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少,不利于使用 索引
第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加 索引时,会提高检索性能,但是会降低修改性能。当减少 索引时,会提高修改性能,降低检索性能。因此,当修改操作远远多于检索操作时,不应该创建索引。

编辑本段索引列

可以基于数据库表中的单列或多列创建 索引多列索引可以区分其中一列可能有相同值的行。
如果经常同时搜索两列或多列或按两列或多列排序时, 索引也很有帮助。例如,如果经常在同一查询中为姓和名两列设置判据,那么在这两列上创建多列 索引将很有意义。
确定 索引的有效性:
检查查询的WHERE和JOIN子句。在任一子句中包括的每一列都是 索引可以选择的对象。
对新 索引进行试验以检查它对运行查询性能的影响。
考虑已在表上创建的 索引数量。最好避免在单个表上有很多 索引
检查已在表上创建的 索引的定义。最好避免包含共享列的重叠 索引
检查某列中唯一数据值的数量,并将该数量与表中的行数进行比较。比较的结果就是该列的可选择性,这有助于确定该列是否适合建立 索引,如果适合,确定索引的类型。

编辑本段类型

根据数据库的功能,可以在 数据库设计器中创建三种 索引唯一索引、主键索引和 聚集索引。有关数据库所支持的 索引功能的详细信息,请参见数据库文档。
提示:尽管 唯一索引有助于定位信息,但为获得最佳性能结果,建议改用 主键唯一约束
唯一索引 唯一索引是不允许其中任何两行具有相同索引值的索引。
当现有数据中存在重复的键值时,大多数数据库不允许将新创建的 唯一索引与表一起保存。数据库还可能防止添加将在表中创建重复键值的新数据。例如,如果在employee表中职员的姓(lname)上创建了 唯一索引,则任何两个员工都不能同姓。
主键索引
数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的 主键
在数据库关系图中为表定义 主键将自动创建主键 索引,主键 索引唯一索引的特定类型。该索引要求 主键中的每个值都唯一。当在查询中使用 主键索引时,它还允许对数据的快速访问。
聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个 聚集索引
如果某 索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非 聚集索引相比,聚集索引通常提供更快的数据访问速度。

编辑本段创建索引

最普通的情况,是为出现在where子句的 字段建一个 索引。为方便讲述,先建立一个如下的表。
CREATE TABLE mytable(
idserial primary key,
category_id int not null default 0,
user_id int not null default 0,
adddate int not null default 0
);
如果在查询时常用类似以下的语句:
SELECT * FROM mytable WHERE category_id=1;
最直接的应对之道,是为category_id建立一个简单的 索引
CREATE INDEX mytable_categoryid ON mytable (category_id);
OK.如果有不止一个选择条件呢?例如:
SELECT * FROM mytable WHERE category_id=1 AND user_id=2;
第一反应可能是,再给user_id建立一个索引。不好,这不是一个最佳的方法。可以建立多重的 索引
CREATE INDEX mytable_categoryid_userid ON mytable(category_id,user_id);
注意到在命名时的习惯了吗?使用"表名_ 字段1名_字段2名"的方式。很快就会知道为什么这样做了。
现在已经为适当的字段建立了 索引,不过,还是有点不放心吧,可能会问,数据库会真正用到这些 索引吗?测试一下就OK,对于大多数的数据库来说,这是很容易的,只要使用EXPLAIN命令:
EXPLAIN
SELECT * FROM mytable
WHERE category_id=1 AND user_id=2;
This is what Postgres 7.1 returns (exactlyasI expected)
NOTICE:QUERY PLAN:
Index Scan using mytable_categoryid_userid on
mytable(cost=0.00..2.02 rows=1 width=16)
EXPLAIN
以上是postgres的数据,可以看到该数据库在查询的时候使用了一个 索引(一个好开始),而且它使用的是创建的第二个索引。看到上面命名的好处了吧,马上知道它使用适当的 索引了。
接着,来个稍微复杂一点的,如果有个ORDERBY 子句呢?不管你信不信,大多数的数据库在使用orderby的时候,都将会从 索引中受益。
SELECT * FROM mytable
WHERE category_id=1 AND user_id=2
ORDER BY adddate DESC;
很简单,就象为where子句中的 字段建立一个 索引一样,也为ORDER BY的字句中的字段建立一个索引:
CREATE INDEX mytable_categoryid_userid_adddate ON mytable (category_id,user_id,adddate);
注意:"mytable_categoryid_userid_adddate"将会被截短为"mytable_categoryid_userid_addda"
CREATE
EXPLAIN SELECT * FROM mytable
WHERE category_id=1 AND user_id=2
ORDER BY adddate DESC;
NOTICE:QUERY PLAN:
Sort(cost=2.03..2.03 rows=1 width=16)
->Index Scanusing mytable_categoryid_userid_addda
on mytable(cost=0.00..2.02 rows=1 width=16)
EXPLAIN
看看EXPLAIN的输出,数据库多做了一个没有要求的排序,这下知道性能如何受损了吧,看来对于数据库的自身运作是有点过于乐观了,那么,给数据库多一点提示吧。
为了跳过排序这一步,并不需要其它另外的 索引,只要将查询语句稍微改一下。这里用的是postgres,将给该数据库一个额外的提示--在ORDER BY语句中,加入where语句中的 字段。这只是一个技术上的处理,并不是必须的,因为实际上在另外两个 字段上,并不会有任何的排序操作,不过如果加入,postgres将会知道哪些是它应该做的。
EXPLAIN SELECT * FROM mytable
WHERE category_id=1 AND user_id=2
ORDER BY category_id DESC,user_id DESC,adddate DESC;
NOTICE:QUERY PLAN:
Index Scan Backward using
mytable_categoryid_userid_addda on mytable(cost=0.00..2.02 rows=1 width=16)
EXPLAIN
现在使用料想的 索引了,而且它还挺聪明,知道可以从索引后面开始读,从而避免了任何的排序。
以上说得细了一点,不过如果数据库非常巨大,并且每日的页面请求达上百万算,想会获益良多的。不过,如果要做更为复杂的查询呢,例如将多张表结合起来查询,特别是where限制字句中的 字段是来自不止一个表格时,应该怎样处理呢?通常都尽量避免这种做法,因为这样数据库要将各个表中的东西都结合起来,然后再排除那些不合适的行,搞不好开销会很大。
如果不能避免,应该查看每张要结合起来的表,并且使用以上的策略来建立 索引,然后再用EXPLAIN命令验证一下是否使用了料想中的索引。如果是的话,就OK。不是的话,可能要建立临时的表来将他们结合在一起,并且使用适当的索引。
要注意的是,建立太多的 索引将会影响更新和插入的速度,因为它需要同样更新每个 索引文件。对于一个经常需要更新和插入的表格,就没有必要为一个很少使用的where字句单独建立 索引了,对于比较小的表,排序的开销不会很大,也没有必要建立另外的索引。
以上介绍的只是一些十分基本的东西,其实里面的学问也不少,单凭EXPLAIN是不能判定该方法是否就是最优化的,每个数据库都有自己的一些优化器,虽然可能还不太完善,但是它们都会在查询时对比过哪种方式较快,在某些情况下,建立 索引的话也未必会快,例如索引放在一个不连续的 存储空间时,这会增加读 磁盘的负担,因此,哪个是最优,应该通过实际的使用环境来检验。
在刚开始的时候,如果表不大,没有必要作 索引,意见是在需要的时候才作索引,也可用一些命令来优化表,例如 MySQL可用"OPTIMIZETABLE"。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值